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We draw a surprising and direct mathematical equivalence between the class of fair division mechanisms,

designed to allocate divisible goods without money, and the class of weakly budget-balanced wagering mech-

anisms, designed to elicit probabilities. While this correspondence between fair division and wagering has

applications in both settings, we focus on its implications for the design of incentive-compatible fair divi-

sion mechanisms. In particular, we show that applying the correspondence to Competitive Scoring Rules, a

prominent class of wagering mechanisms based on proper scoring rules, yields the first incentive-compatible

fair division mechanism that is both fair (proportional and envy-free) and responsive to agent preferences.

Moreover, for two agents, we show that Competitive Scoring Rules characterize the whole class of non-

wasteful and incentive-compatible fair division mechanisms, subject to mild technical conditions. As one of

several consequences, this allows us to resolve an open question about the best possible approximation to

optimal utilitarian welfare that can be achieved by any incentive-compatible mechanism. Finally, since the

equivalence greatly expands the set of known incentive-compatible fair division mechanisms, we conclude

with an evaluation of this entire set, comparing the mechanisms’ axiomatic properties and examining their

welfare performance in simulation.

1. Introduction

Consider the following two scenarios. In the first, an information-seeking principal would like to

elicit credible probabilistic forecasts from a group of agents. The principal does so by collecting a

wager from each agent along with the agent’s prediction, and redistributing the wagers in such a

way that agents with more accurate predictions are more highly rewarded. In the second scenario,

a neutral mediator needs to allocate a set of divisible resources, such as produce donated to a food

bank or compute cycles on a shared server, to a group of agents with differing preferences over the

†Rupert Freeman and Jens Witkowski contributed equally to the manuscript.

1



2 Freeman et al.: An Equivalence Between Fair Division and Wagering Mechanisms

resources. The mediator’s primary objective is ensuring that every agent walks away with her fair

share.1

On the surface, these scenarios appear quite distinct. Central to wagering is the idea of money

changing hands, with each agent’s rewards contingent on an uncertain future state of the world.

In contrast, the fair division of goods or resources involves no exchange of money and no inherent

uncertainty.

Despite these apparent differences, we show that these scenarios are two sides of the same coin.

In particular, we show that there is a one-to-one correspondence between the class of weakly

budget-balanced wagering mechanisms—those for which the principal is guaranteed no loss—and

the class of fair division mechanisms for divisible goods under additive valuations. Furthermore, we

show that commonly studied properties of wagering mechanisms correspond precisely to commonly

studied properties of fair division. Individual rationality, which ensures that risk-neutral agents

benefit in expectation from participation in a wagering mechanism, corresponds to the notion of

proportionality in fair division, which guarantees that every agent is at least as satisfied as if each

good were divided equally among the agents. Similarly, incentive compatibility, a property common

to the literature in both settings, carries over immediately. Finally, wagering mechanisms that

satisfy normality, which, loosely speaking, means that an agent’s payment can be interpreted as

her performance relative to other agents, yield fair division mechanisms that are envy-free, meaning

that no agent prefers any other agent’s allocation to her own. (For this last pair of properties, the

reverse direction does not hold.)

While this correspondence has implications for both fair division and wagering, we focus on

the implications it has on the design of incentive-compatible fair division mechanisms. In partic-

ular, Competitive Scoring Rules (CSRs, Kilgour and Gerchak 2004, Lambert et al. 2008, 2015),

a family of wagering mechanisms built on the machinery of proper scoring rules (e.g., Gneiting

and Raftery 2007), can be imported into the fair division setting. To the best of our knowledge,

this newly established family of fair division mechanisms is the first to jointly satisfy proportion-

ality, envy-freeness, and incentive compatibility. Moreover, these mechanisms are also the first

strictly incentive-compatible fair division mechanisms, i.e., agents do worse by misreporting than

by truthfully reporting their preferences.

Generalizing a characterization result by Han et al. (2011) from two goods to any number

of goods, we show that CSRs encompass the entire space of non-wasteful, incentive-compatible

fair division mechanisms for two agents, subject to mild technical conditions. As a corollary, we

strengthen an impossibility result pertaining to social welfare approximation. Exploring the char-

acterization result and knowing that all non-wasteful, incentive-compatible mechanisms for two

1 For clarity, we adopt the convention of using feminine pronouns for the agents.
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agents must be CSRs, we cast several mechanisms from the literature in that framework and identify

their corresponding proper scoring rules. Interestingly, the designers of some of these mechanisms

turn out to have rediscovered classic scoring rules from the literature, such as the spherical scoring

rule (Roby 1965, Jose 2009), whereas others invented new ones. Concluding the analysis of CSRs,

we provide closed-form expressions for utilitarian and Nash welfare as functions of the proper scor-

ing rule associated with a given CSR. As it turns out, there is a tight connection between these

welfare measures and the scoring rule’s expected loss function.

Due to the correspondence, the set of known incentive-compatible mechanisms expands greatly,

so that we can now compare the existing mechanisms from the fair division literature with the new

mechanisms gained through the correspondence. In doing so, we first provide a complete overview of

the axiomatic properties of this updated set of known incentive-compatible mechanisms. Moreover,

we also compare the mechanisms via simulation, evaluating their empirical performance according

to utilitarian and Nash welfare. For the base case of two agents and two goods, we find that

CSRs perform better than any of the wasteful mechanisms, including those with constant social

welfare approximation guarantees. Furthermore, we observe that the best choice of CSR depends

on context, confirming our theoretical analysis regarding the connection between loss functions

and welfare. For the case where the number of agents is large relative to the number of goods,

Strong Demand Matching (SDM, Cole et al. 2013b) performs best overall. However, for the special

case of two goods, the Double Clinching Auction (DCA, Freeman et al. 2017), which was originally

developed as a wagering mechanism, achieves similarly high welfare and, in contrast to SDM, also

satisfies proportionality. In the setting where the number of goods is large relative to the number

of agents, the Constrained Serial Dictatorship (CSD, Aziz and Ye 2014) proves surprisingly robust.

Related Work

The study of fair division dates back to the 1940s (Steinhaus 1948) and many variants of the

problem have been examined (see Chapters 11–13 in the survey by Brandt et al. 2016). In its

general form, fair division is concerned with allocating a set of resources among competing agents

without monetary transfers. The goal is to achieve allocations that are fair to the agents while

also allocating goods as efficiently as possible (Bertsimas et al. 2011, 2012). Arguably the most

prominent fair division setting is that of cake cutting, in which the resource to be allocated is a

single heterogenous good (Robertson and Webb 1998, Deng et al. 2012, Procaccia 2013).

We consider agents who report their valuations strategically, joining a growing line of work

in fair division. Several papers derive impossibility results for designing deterministic, incentive-

compatible, and fair mechanisms for cake cutting (Brânzei and Miltersen 2015, Menon and Larson

2017, Tao 2022). Others circumvent these results by designing randomized algorithms (Mossel and
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Tamuz 2010, Chen et al. 2013) or considering special cases such as agents holding piecewise uniform

valuations (Maya and Nisan 2012, Chen et al. 2013, Bei et al. 2020), a setting incomparable to

ours.

In this paper, we focus on the problem of allocating divisible goods to agents with linear-additive

valuation functions, a special case of cake cutting. For the special case of two agents, several

incentive-compatible mechanisms focusing on approximating the optimal utilitarian welfare have

been proposed (Guo and Conitzer 2010, Han et al. 2011, Cheung 2016, Cole et al. 2013a). We

discuss these mechanisms in more detail in Section 5. In a similar spirit but for any number of

agents, Cole et al. (2013b, 2022) design mechanisms that guarantee every agent a constant fraction

of the utility they would achieve in the allocation that maximizes Nash welfare. Aziz and Ye (2014)

introduce the Constrained Serial Dictatorship (CSD) mechanism for cake cutting, which, in the

setting we study, corresponds to an incentive-compatible and proportional mechanism.

Beyond cake cutting, fair division is also concerned with the allocation of indivisible goods (e.g.,

Chevaleyre et al. 2006, Brânzei et al. 2022). Analogous to the literature on divisible goods, a

line of work has focused on designing mechanisms for allocating indivisible goods under additive

valuations. In particular, Caragiannis et al. (2009) provide a characterization of all incentive-

compatible mechanisms for two agents and two goods in this space, which was later generalized

to arbitrary numbers of goods by Amanatidis et al. (2017). This can be seen as analogous to our

result in Section 5 characterizing all incentive-compatible mechanisms for two agents and divisible

goods. For additional discussion of work focusing on allocating indivisible goods with strategic

agents, see Section 6.2 of the survey by Amanatidis et al. (2022).

On the other side of the equivalence is the wagering setting, which dates back to the work of

Eisenberg and Gale (1959), who studied the equilibrium behavior of bettors with probabilistic

beliefs about horse race outcomes. More recently, Lambert et al. (2008, 2015) initiated the study

of incentive-compatible wagering mechanisms, building on Competitive Scoring Rules (Kilgour

and Gerchak 2004) to introduce Weighted Score Wagering Mechanisms (WSWMs). Chen et al.

(2014) identify arbitrage opportunities in WSWMs and design a class of No-Arbitrage Wagering

Mechanisms (NAWMs), which do not permit these opportunities. Freeman et al. (2017) point out

that, in existing incentive-compatible wagering mechanisms, bettors typically only stand to lose a

small fraction of their wager, and design the Double Clinching Auction (DCA) as a more efficient

alternative. Chen et al. (2019) address the efficiency problem by allowing mechanisms to randomize.

Finally, while we are unaware of any other work that draws a direct connection between wagering

(or even forecasting more generally) and fair division, the connection between uncertainty and

item allocation dates back at least as far as the work by Arrow and Debreu (1954). More recently,

Hanson (2003) utilizes scoring rules in the design of prediction markets and Frongillo and Kash

(2021) present a convex analysis framework, unifying mechanism design and scoring rule design.
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2. Preliminaries and Background

To set the stage for our main results, we begin with a review of the formal models of both fair

division and wagering, and define the properties most commonly sought out in fair division and

wagering mechanisms.

2.1. Fair Division Mechanisms

Consider a set of n≥ 2 agents [n] = {1, . . . , n} and a set of m≥ 2 divisible items [m] = {1, . . . ,m}.

Each agent i has cardinal valuations vi = (vi,1, . . . , vi,m) such that vi,k ≥ 0 for each item k ∈ [m],

capturing the agents’ marginal rates of substitution across individual items. For example, vi,1 =

0.75, vi,2 = 0.25 means that agent i values one part of item 1 as much as three parts of item 2.

As is standard in the cake cutting literature, we assume these valuations are normalized so that∑m

k=1 vi,k = 1 for all agents i. Let ai = (ai,1, . . . , ai,m) denote a bundle of items allocated to agent i,

with each component ai,k ∈ [0,1] specifying the fraction of item k that i receives. Agent i’s utility2

for ai with valuations vi is then ui(ai,vi) =
∑m

k=1 vi,kai,k = vi ·ai.

An allocation a = (a1, . . . ,an) consists of bundles of items ai, one for each agent i, such that

no item is overallocated, i.e,
∑n

i=1 ai,k ≤ 1 for all k ∈ [m]. Observe that we do allow items to be

allocated incompletely, resulting in waste. We say that an allocation is non-wasteful if
∑n

i=1 ai,k = 1

for all k ∈ [m]. A fair division mechanism A (for “allocation”) takes as input a profile of all agents’

reports y = (y1, . . . ,yn), where yi = (yi,1, . . . , yi,m) is a vector of reported (normalized) valuations

for each agent i, and outputs an allocation A(y). We use Ai(y) for the bundle of items allocated

to agent i by A and Ai,k(y) for the implied fraction of item k ∈ [m]. We say that a fair division

mechanism is non-wasteful if it is guaranteed to output non-wasteful allocations.

One way to evaluate the quality of an allocation a from a mechanism is according to a social

welfare function that takes into account the utilities of all agents. We will make use of two promi-

nent social welfare functions: utilitarian welfare U(a,y) = 1
n

∑n

i=1 ui(ai,yi) = 1
n

∑n

i=1

∑m

k=1 yi,kai,k,

defined as the arithmetic mean of the agents’ utilities (according to their reported valuations), and

Nash welfare N(a,y) = (
∏n

i=1 ui(ai,yi))
1
n = (

∏n

i=1

∑m

k=1 yi,kai,k)
1
n , defined as the geometric mean

of the agents’ utilities (Nash 1950).3 Observe that Nash welfare can be seen as a tradeoff between

utilitarian welfare maximization (since the product rewards high utilities) and egalitarian fairness

(in the extreme case, a single agent with zero utility results in zero Nash welfare).

2 Technically, ui does not require a subscript since it is fully specified by the bundle and valuation vector that it takes
as input, but we add the subscript for clarity.

3 Note that, although common in the literature, the assumption of normalized valuations is not without loss of
generality in the context of utilitarian welfare. More precisely, the relative welfare of two allocations can be reversed
by a change in the scale of the agents’ valuations. In contrast, this is not the case under Nash welfare. For example,
if the sum of an agent’s valuations doubled, the Nash welfare of any allocation would also double.
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Another way to evaluate mechanisms is via axiomatic properties. Several of these have been

proposed in the fair division literature. Anonymity requires that the mechanism’s allocation does

not depend on the identities of the agents.

Definition 1. A fair division mechanism A is anonymous if for all profiles of reports y,

all permutations σ of [n], all agents i, and all items k ∈ [m], it holds that Ai,k((y1, . . . ,yn)) =

Aσ(i),k((yσ−1(1), . . . ,yσ−1(n))).

Proportionality (Steinhaus 1948) requires that each agent receives a 1/n share of her total

(reported) valuations for the set of all items.

Definition 2. A fair division mechanism A is proportional if, for all profiles of reports y and

all agents i, it holds that ui(Ai(y),yi)≥ 1/n.

Envy-freeness (Foley 1967) requires that no agent ever prefer another agent’s allocation to her

own.

Definition 3. A fair division mechanism A is envy-free if, for all profiles of reports y, and for

all agents i, j, it holds that ui(Ai(y),yi)≥ ui(Aj(y),yi).

Note that a trivial envy-free and proportional allocation always exists; simply allocate each

agent a 1/n fraction of each item. Furthermore, note that envy-freeness implies proportionality for

non-wasteful mechanisms.

Pareto optimality is a prominent notion of economic efficiency. It requires that a mechanism

outputs allocations for which it is impossible to make any agent better off without making another

agent worse off.

Definition 4. A fair division mechanism A is Pareto optimal if for all profiles of reports y,

there does not exist an allocation a such that ui(ai,yi)≥ ui(Ai(y),yi) for all agents i, with the

inequality being strict for at least one agent.

Finally, we desire mechanisms that do not incentivize agents to misreport their (private) valu-

ations. The definition we use is that of dominant-strategy incentive compatibility, which requires

that it is in each agent’s best interest to report truthfully, regardless of the reports of others. This

is in contrast to the weaker concept of Bayes-Nash incentive compatibility, which only requires

truthful reporting to be an equilibrium.

Definition 5. A fair division mechanism A is (weakly) incentive compatible if, for all agents

i, all valuations vi, and all profiles of reports y, it holds that ui(Ai((y1, . . . ,vi, . . . ,yn)),vi) ≥
ui(Ai((y1, . . . ,yi, . . . ,yn)),vi). A is strictly incentive compatible if this inequality is strict whenever

yi 6= vi.
Note that, for n= 2, it is known that any fair division mechanism satisfying incentive compati-

bility and Pareto optimality must be a dictatorship (Schummer 1996), in which one agent receives

all items that she has positive value for, with the other agent receiving the remaining items. In
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particular, this implies that no incentive-compatible and Pareto-optimal fair division mechanism

can also satisfy anonymity, proportionality, or envy-freeness.

2.2. Wagering Mechanisms

The model of wagering mechanisms we study here was first formalized by Lambert et al. (2008),

who build on ideas of Kilgour and Gerchak (2004). For intuition, consider a group of friends betting

(probabilistically) on the outcome of a sports game, where everyone pays a certain amount of

money into a (common) pot and later—depending on the outcome that materializes—receives some

money back.

Let X be a random variable that takes values in [m] = {1, . . . ,m} with m≥ 2 and a set of n≥ 2

agents (or bettors) [n] = {1, . . . , n}. Let ∆m denote the space of probability distributions over the

m possible outcomes. Each agent i has a private and subjective belief pi = (pi,1, . . . , pi,m) ∈ ∆m

with pi,k denoting the probability mass that agent i assigns to event outcome k ∈ [m]. These beliefs

are assumed to be immutable, i.e., agent i does not update her belief upon learning any other

agent’s belief. A wagering mechanism B (for “betting”) elicits beliefs from the agents. Formally,

each agent i pays a “wager”4 w ≥ 0 and reports a belief yi = (yi,1, . . . , yi,m) ∈∆m, and, once the

event has materialized, gets paid an amount Bi(y, k), which depends on the full profile of agent

reports y = (y1, . . . ,yn) ∈∆n
m and the eventually observed outcome X = k. Wagering mechanism

B is defined as the set {Bi}i∈[n]. For notational simplicity, we normalize the total amount paid by

the agents to
∑n

i=1w := 1, resulting in a uniform wager w = 1/n. To be a well-defined wagering

mechanism, it must be the case that the payments later (partly) returned to the agents are non-

negative, i.e., Bi(y, k)≥ 0 for all i,y and k.

Lambert et al. (2008), extending the model of Kilgour and Gerchak (2004), introduce a set of

properties desirable for wagering mechanisms: anonymity, individual rationality, budget balance,

incentive compatibility, and normality. We present each of them in turn. Anonymity requires that

the payments do not depend on the identities of the agents.

Definition 6. A wagering mechanism B is anonymous if, for all profiles of reports y, all per-

mutations σ of [n], all agents i, and all outcomes k ∈ [m], it holds that Bi((y1, . . . ,yn), k) =

Bσ(i)((yσ−1(1), . . . ,yσ−1(n)), k).

Individual rationality says that, under the assumption that agents are risk neutral, agents do

not lose money in expectation and therefore would willingly participate in the mechanism.

Definition 7. A wagering mechanism B is individually rational if, for all agents i and all beliefs

pi, there exists a report yi such that for all reports of the other agents (y1, . . . ,yi−1,yi+1, . . . ,yn),

it holds that EX∼pi Bi(y,X)≥w= 1/n.

4 Lambert et al. (2008) extend the model of Kilgour and Gerchak (2004) to incorporate individual wagers but since the
main ideas of our work are already exhibited without this extra degree of freedom, we restrict to the uniform-wager
case presented here.
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Strict budget balance guarantees that the amount paid to the mechanism is fully returned to

the participants. Weak budget balance allows for some money to remain with the mechanism.

Definition 8. A wagering mechanism B is weakly budget balanced if, for all profiles of reports y

and all outcomes k ∈ [m], it holds that
∑n

i=1Bi(y, k)≤ 1. Wagering mechanism B is strictly budget

balanced if the inequality holds with equality for all y and all k ∈ [m].

Incentive compatibility says that agents should have an incentive to truthfully report their beliefs.

Definition 9. A wagering mechanism B is (weakly) incentive compatible if, for all

agents i, all beliefs pi, and all profiles of reports y, EX∼pi Bi((y1, . . . ,pi, . . . ,yn),X) ≥

EX∼pi Bi((y1, . . . ,yi, . . . ,yn),X). B is strictly incentive compatible if the inequality is strict when-

ever yi 6= pi.

Normality gives meaning to the idea that an agent’s payment can be interpreted as a measure

of her prediction’s accuracy relative to the accuracies of the other agents. It says that if the

expected payment of an agent i increases (decreases) as a result of i changing her report, then

the expected payment of every other agent should not increase (decrease). Similarly, if agent i’s

expected payment does not change when she changes her report, then the expected payment of all

other agents should also stay unchanged.

Definition 10. A wagering mechanism B is normal if, for every probability distribution θ =

(θ1, . . . , θm) ∈∆m, every agent i, all reports yi,y
′
i with y′

i 6= yi, and all profiles of reports of the

other agents (y1, . . . ,yi−1,yi+1, . . . ,yn), the following two conditions hold:

1. If EX∼θ Bi((y1, . . . ,y
′
i, . . . ,yn),X) > EX∼θ Bi((y1, . . . ,yi, . . . ,yn),X) then

EX∼θ Bj((y1, . . . ,y
′
i, . . . ,yn),X)≤EX∼θ Bj((y1, . . . ,yi, . . . ,yn),X) for all j 6= i.

2. If EX∼θ Bi((y1, . . . ,y
′
i, . . . ,yn),X) = EX∼θ Bi((y1, . . . ,yi, . . . ,yn),X) then

EX∼θ Bj((y1, . . . ,y
′
i, . . . ,yn),X) = EX∼θ Bj((y1, . . . ,yi, . . . ,yn),X) for all j 6= i.

The first case covers the situations of agent i increasing her expected score by changing her

report from yi to y′
i, and, symmetrically, of agent i decreasing her expected score by changing from

y′
i to yi.

3. The Correspondence

In this section, we show that there is a one-to-one correspondence between fair division mechanisms

and weakly budget-balanced wagering mechanisms. To build intuition, imagine yourself in a wager-

ing setting and consider the situation before the outcome materializes but with all reports already

reported. Even by then, the wagering mechanism already describes, for each possible outcome,

who shall receive how much of the full $1. That is, the wagering mechanism defines conditional

payments for each outcome. Now imagine that the m possible outcomes in the wagering setting

correspond to m items in a fair division setting, and consider a single outcome/item k. What is
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an agent’s valuation for this item? In the wagering setting, the agent believes outcome k to occur

with probability pi,k and hence that outcome’s contribution to her expected payment is pi,k times

the fraction of $1 she receives in that outcome, i.e., pi,k · Bi(y, k). In the fair division setting, the

agent values the entire item at vi,k and, given that she only receives fraction Ai,k(y), her valuation

for her fraction of the item is vi,k · Ai,k(y).

By comparing the agent’s utility in both settings, it is natural to define a fair division mechanism

A, corresponding to the given wagering mechanism, which allocates to each agent i a Bi(y, k)

fraction of item k given reports y, i.e., Ai,k(y) = Bi(y, k). The total (expected) utility that the

agent receives in the wagering setting is EX∼pi Bi(y,X) =
∑m

k=1 pi,k · Bi(y, k), while the utility

that she receives in the fair division setting is ui(Ai(y),vi) = vi · Ai(y) =
∑m

k=1 vi,k · Ai,k(y) =∑m

k=1 vi,k · Bi(y, k). Since we have assumed linear additive valuations in the fair division setting,

this correspondence between mechanisms preserves (expected) utility when beliefs pi are mapped

to valuations vi.

Corresponding Mechanisms

The following definition formalizes this correspondence.

Definition 11 (Corresponding mechanisms). Fair division mechanism A and wagering

mechanism B are corresponding mechanisms if, for all profiles of reports y, all i ∈ [n], and all

k ∈ [m],

Ai,k(y) =Bi(y, k).

Definition 11 gives a one-to-one correspondence between fair division mechanisms and weakly

budget-balanced wagering mechanisms. We illustrate both directions separately.

If A is a fair division mechanism, then, by definition of a fair division mechanism, its correspond-

ing wagering mechanism always returns non-negative payments. That is, it satisfies Bi(y, k)≥ 0 for

all profiles of reports y, all i∈ [n], and all k ∈ [m]. Furthermore, because a fair division mechanism

never overallocates items, the corresponding wagering mechanism is weakly budget balanced. That

is,
n∑
i=1

Bi(y, k) =
n∑
i=1

Ai,k(y)≤ 1.

Similarly, if B is a weakly budget-balanced wagering mechanism, then the corresponding fair

division mechanism satisfies Ai,k(y) ≥ 0 for all profiles of reports y, all i ∈ [n], and all k ∈ [m].

Moreover, for all profiles of reports y and all k ∈ [m],

n∑
i=1

Ai,k(y) =

n∑
i=1

Bi(y, k)≤ 1.
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Corresponding Properties

In the remainder of the section, we show that the correspondence from Definition 11 maps several

desirable properties from the fair division to the wagering setting, and vice versa. In particular,

incentive compatibility is preserved, and, subject to incentive compatibility, proportionality maps

to individual rationality and envy-freeness is implied by normality.

We first show an equivalence between incentive compatibility in both settings. That is, a misre-

port that produces a more preferred allocation of items also produces a higher expected payment

in the wagering setting. All proofs are in the appendix.

Theorem 1. A fair division mechanism A is (weakly, strictly) incentive compatible if and only

if the corresponding wagering mechanism B is (weakly, strictly) incentive compatible.

We next show an equivalence between proportionality and individual rationality. Though typ-

ically not described this way, the equivalence highlights that proportionality can be viewed as

providing incentives for agents to participate over an outside option of being allocated 1/n of each

item.

Theorem 2. An incentive-compatible fair division mechanism A is proportional if and only if

the corresponding incentive-compatible wagering mechanism B is individually rational.

The restriction to incentive-compatible mechanisms is needed because the definition of indi-

vidual rationality allows the belief/valuation to be different from the report, whereas propor-

tionality guarantees that the inequality in the definition holds when the report equals the

belief/valuation.5 Incentive compatibility nullifies this difference as it guarantees that the report

equals the belief/valuation.

Finally, we show that, subject to incentive compatibility and anonymity,6 normality implies

envy-freeness.

Theorem 3. If an anonymous, incentive-compatible wagering mechanism is normal then the

corresponding anonymous, incentive-compatible fair division mechanism is envy-free.

Note that, as part of the proof of Theorem 3, we show that anonymity is preserved by the

correspondence. Further note that the converse to Theorem 3 does not hold; in particular, we

show in the e-companion (Section EC.1) that Strong Demand Matching is anonymous, (weakly)

incentive compatible, and envy-free, but not normal.

5 Without restricting to incentive compatibility, proportionality implies individual rationality but the reverse impli-
cation does not hold. For example, the following mechanism is individually rational but not proportional: each agent
receives 1/n of every item if she reports (1,0, ...,0) and otherwise receives nothing.

6 In fact, the theorem continues to hold when we exchange anonymity for the strictly weaker property of “equal
treatment of equals,” which states that two agents with the same report should receive the same payment (wagering)
/ bundle (fair division).
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4. Competitive Scoring Rules: A Family of Envy-Free, Proportional,
and Incentive-Compatible Fair Division Mechanisms

A primary focus of the fair division literature is to design mechanisms that are “fair,” with pro-

portionality and envy-freeness typically understood to be the gold standard. To our knowledge,

the only known incentive-compatible mechanism to achieve allocations that are fair in this sense

is the uniform allocation mechanism, which allocates each agent a 1/n fraction of every item. Of

course, this uniform allocation is hardly satisfactory as it ignores the agents’ preferences and hence

potential benefits from trade. Instead, one would want a mechanism to facilitate beneficial trade

whenever agent preferences differ, and thus to Pareto dominate the uniform allocation with respect

to the agents’ utilities.

In this section, we introduce Competitive Scoring Rules (CSRs, Kilgour and Gerchak 2004), a

class of wagering mechanisms that—when imported into the fair division setting—turn out to be

the first mechanisms to jointly satisfy the aforementioned properties.7 We begin by introducing

proper scoring rules, which form the basis of Competitive Scoring Rules.

Proper Scoring Rules. Proper scoring rules (Brier 1950, Good 1952, Gneiting and Raftery

2007) are scoring functions, which are used in two ways: to evaluate the accuracy of probabilistic

forecasts and to incentivize the truthful reporting of privately held, probabilistic beliefs. Given the

focus of this work, we introduce them taking the incentive perspective. Consider a future event, such

as a presidential election, that will take one of m possible outcomes (i.e., one of the m presidential

candidates will eventually be elected). Furthermore, consider an agent with a private, subjective

belief pi ∈∆m about the probability of the m outcomes, and a principal seeking to truthfully elicit

pi from the agent. A proper scoring rule is a scoring function that ensures the agent maximizes her

expected score by reporting her private belief truthfully to the principal. The temporal order is as

follows: first, the agent reports a forecast yi ∈∆m, which may or may not coincide with her private

belief pi. Second, one of the m outcomes materializes, and, third, the proper scoring rule assigns

the agent a score that depends on the agent’s reported forecast and the materialized outcome.

Definition 12. A scoring rule R is a function that maps a report yi ∈∆m and an outcome

k ∈ [m] to a score R(yi, k)∈R∪{−∞}. Scoring rule R is (weakly) proper if, for all yi,pi ∈∆m,

E
X∼pi

R(pi,X)≥ E
X∼pi

R(yi,X).

Scoring rule R is strictly proper if the inequality is strict for all yi 6= pi. Scoring rule R is bounded

if there exist R,R ∈R such that R(yi, k)∈ [R,R] for all yi ∈∆m, k ∈ [m].

7 As we will see in Section 5, four mechanisms from the literature can be cast as CSRs and hence also satisfy these
properties, but they are only defined for the restricted case of n= 2 agents. Furthermore, in Section 6, we will see
that two other mechanisms satisfy these properties but again only for restricted cases of n= 2 (PAmax) and m= 2
(DCA). In addition to these restrictions on n or m, both of these latter mechanisms are wasteful. Moreover, and
analogous to CSRs, DCA is only known to be a fair division mechanism due to the correspondence in the first place.
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It will be helpful to have notation GR(pi) := EX∼pi R(pi,X) for the expected score function given

truthful reporting and LR(pi,yi) := EX∼pi [R(pi,X)−R(yi,X)] for the expected loss of reporting

yi ∈∆m instead of true belief pi ∈∆m under proper scoring R.

Positive-affine transformations of proper scoring rules preserve (strict) properness and there exist

infinitely many proper scoring rules since any (strictly) convex function f yields a (strictly) proper

scoring rule R with GR = f (Gneiting and Raftery, 2007; Theorem 1). A widely used bounded

scoring rule is the quadratic scoring rule (Brier 1950), which we will regularly refer to throughout

the paper and give here in its standard, normalized form, yielding scores between 0 and 1.

Proposition 1. (Brier 1950) The quadratic scoring rule Rq(yi, k) = yi(k)− 0.5
m∑̀
=1

yi(`)
2 + 0.5

is strictly proper.

Competitive Scoring Rules. Competitive Scoring Rules, first introduced by Kilgour and Ger-

chak (2004) and further analyzed by Lambert et al. (2008), can be thought of as multi-agent

versions of proper scoring rules. Indeed, they are parameterized by the choice of a proper scoring

rule, yielding an infinite family of mechanisms. In this section, we analyze this family of mechanisms

in the context of fair division, exploiting the correspondence from Section 3.

Given a proper scoring rule bounded by the interval [0,1], a Competitive Scoring Rule can be

thought of as paying each agent their wager of 1/n, plus an adjustment equal to 1/n times the

difference between their own score and the average score of all other agents.

Definition 13. A Competitive Scoring Rule8 pays every agent i

CRi,k(y) = CRi (y, k) =
1

n
+

1

n

(
R(yi, k)− 1

n− 1

∑
j 6=i

R(yj, k)

)
, (1)

where R is a proper scoring rule bounded by [0,1].

Every Competitive Scoring Rule has a corresponding fair division mechanism according to Def-

inition 11. (In Definition 13, we first use the fair division and then the wagering notation.) To see

this, first observe that the boundedness condition on R immediately implies that the Competitive

Scoring Rule makes non-negative payments. Second, summing over all agents, it is easy to see that

every Competitive Scoring Rule is strictly budget balanced.

Competitive Scoring Rules are known to satisfy a number of desirable properties in the wagering

setting.9

8 Kilgour and Gerchak (2004) originally defined Competitive Scoring Rules to pay each agent the difference between
their own score and the average score of the other agents, that is, only the part between the large brackets. The
formulation that we use is a modification by Lambert et al. (2008), who adapted Competitive Scoring Rules to
guarantee non-negative payments.

9 In their Theorem 1, Lambert et al. (2008) only consider CSRs that are defined using strictly proper scoring rules.
The extension to weakly proper scoring rules is an easy adaptation of their proof.
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Theorem 4 (Kilgour and Gerchak, 2004; Lambert et al., 2008, Theorem 1).

Competitive Scoring Rules are anonymous, incentive compatible, individually rational, and normal.

Additionally, if a Competitive Scoring Rule is defined using a strictly proper scoring rule, then it

is strictly incentive compatible.

As a corollary of Theorem 4 combined with Theorems 1, 2, and 3 from the correspondence, we

obtain the following.

Corollary 1. Fair division mechanisms corresponding to Competitive Scoring Rules are

anonymous, incentive compatible, proportional, and envy-free. Additionally, if a Competitive Scor-

ing Rule is defined using a strictly proper scoring rule, then the corresponding fair division mech-

anism is strictly incentive compatible.

As mentioned earlier, the only fair division mechanism known to be incentive compatible, propor-

tional, and envy-free is the uniform allocation mechanism.10 The following proposition shows that

CSRs with strictly proper scoring rules provide strictly higher utility to every agent compared to

the uniform allocation as long as some agents disagree about the relative valuation of the items.11

In the context of cake cutting, Mossel and Tamuz (2010) describe mechanisms with this property

as “super fair.”

Proposition 2. Let R be a strictly proper scoring rule and let y be a profile of reports for which

there exist j, ` with yj 6= y`. Then the utility of every agent i∈ [n] under CSR CR is

ui(CRi (y),yi)> 1/n.

This implies that CSRs are the first incentive-compatible, proportional, and envy-free fair divi-

sion mechanisms that Pareto dominate the uniform allocation mechanism. Moreover, when defined

using a strictly proper scoring rule, Competitive Scoring Rules are, to our knowledge, the first

strictly incentive-compatible fair division mechanisms.

5. Characterizing Incentive-Compatible Fair Division Mechanisms for
n= 2

Building on the correspondence, we have identified CSRs as a family of incentive-compatible fair

division mechanisms with a unique set of desirable properties among known mechanisms. Further

capitalizing on the correspondence, we now exploit a known result in wagering to show that, in fact,

10 In fact, the uniform allocation mechanism is a member of the Competitive Scoring Rule family, namely the CSR
with the constant scoring rule R(yi, k) = 1 for all yi ∈∆m, k ∈ [m].

11 In the proof of Proposition 2, we show a more general version that applies whenever there exists an agent j who
obtains a strictly lower expected score than agent i, according to i’s report yi. When R is strictly proper and at least
two agents make different reports, such a j is guaranteed to exist.
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CSRs comprise the complete set of non-wasteful, incentive-compatible fair division mechanisms for

n = 2, subject to mild technical conditions (Section 5.1). In Section 5.2, as an immediate conse-

quence of this characterization, we close an open question regarding the best possible approximation

to the optimal utilitarian welfare that can be achieved by a non-wasteful, incentive-compatible fair

division mechanism for n= 2 agents. Moreover, this characterization also reduces the design space

of non-wasteful, incentive-compatible fair division mechanisms for n= 2 to that of proper scoring

rules. We first explore this in Section 5.3, where we show that CSRs encompass several known

mechanisms from the literature as special cases by identifying their corresponding scoring rules.

We then discuss this further in Section 5.4, where we exploit known structural properties of proper

scoring rules to give novel closed-form expressions for utilitarian and Nash welfare in terms of the

associated loss functions, demonstrating that insights from the scoring rule literature can be used

to inform the particular fair division mechanism that should be used in practice.

5.1. The Characterization

Han et al. (2011) characterized the class of incentive-compatible fair division mechanisms for the

setting with n= 2 agents and m= 2 items. They showed that any incentive-compatible mechanism

that is anonymous and item symmetric (i.e., if the valuations of two items are swapped by every

agent, then the allocations of these two items are also swapped) must be swap-dictatorial. A

swap-dictatorial mechanism is defined by a (potentially infinite) set of bundles12 D⊆ [0,1]m. The

mechanism randomly selects one agent as the dictator, who is then allocated their most preferred

bundle in D (ties broken arbitrarily), with the other agent receiving the remaining items. The

output of the mechanism is then the expectation over both possible choices of dictator. As the first

step towards a characterization that applies to any m, we show that the class of swap-dictatorial

mechanisms is exactly the class of CSRs.

Theorem 5. For n= 2 agents, a fair division mechanism A is swap-dictatorial if and only if

A is a Competitive Scoring Rule CR for some proper scoring rule R, i.e., if and only if Ai,k(y) =

1
2

+ 1
2

(
R(yi, k)−R(y3−i, k)

)
for all i∈ {1,2} and all k ∈ [m].

Knowing that swap-dictatorial mechanisms and CSRs are equivalent, we can now leverage a

characterization by Lambert et al. (2008), which was originally developed in the wagering setting.

We show that, subject to mild technical conditions, the class of CSRs in fact coincides with the

class of non-wasteful, incentive-compatible mechanisms. In order to state the result, we need to

define a technical condition. We present it in the fair division setting for concreteness but, by the

12 Guo and Conitzer (2010) and Han et al. (2011) define swap-dictatorial mechanisms using individual sets of bun-
dles Di. For ease of exposition, since we refer to swap-dictatorial mechanisms only in the context of anonymous
mechanisms, we have only one set of bundles for all agents.
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correspondence (Section 3), it can equally be presented in the wagering setting. Smoothness is

largely a mathematical convenience but it does imply that the allocations are continuous in every

agent’s report, which means that allocations do not change drastically for small changes in reports.

Definition 14. A fair division mechanism A is smooth if, for all i∈ [n], Ai is twice continuously

differentiable with respect to every report yj, j ∈ [n]. A proper scoring rule R is smooth if it is

twice continuously differentiable with respect to the report yi for all k ∈ [m].

Lemma 1. For n= 2 agents, if a fair division mechanism A is incentive compatible, anonymous,

smooth, and non-wasteful, then it is a Competitive Scoring Rule CR with some smooth proper

scoring rule R.

Lemma 1 immediately follows from applying the correspondence to Lemma 4 of Lambert et al.

(2008) since normality is implied by n= 2 for strictly budget-balanced wagering mechanisms. Note

that Lambert et al. (2008) consider strictly incentive-compatible mechanisms and show that they

are defined by strictly proper scoring rules, but a simple adaptation of their proof allows the

incentive compatibility condition to be relaxed to weak incentive compatibility by allowing the

more general class of weakly proper scoring rules instead. Theorem 6 combines Lemma 1 with

Theorem 5 and strengthens Han et al. (2011)’s characterization result along two dimensions: first,

their characterization applies only to m= 2 items and, second, they require item symmetry.

Theorem 6. For n = 2 agents, if a mechanism A is anonymous, smooth, and non-wasteful,

then A is incentive compatible if and only if A is swap-dictatorial.

5.2. Optimal Welfare Approximation

Theorem 6 has immediate implications for a line of work that has focused on using incentive-

compatible mechanisms to approximate the optimal welfare for fair division settings with n = 2

agents. The goal is to maximize the worst case ratio between the utilitarian welfare implemented

by the mechanism and the optimal utilitarian welfare (i.e., the average of the agents’ utilities in

the allocation in which every item is allocated to the agent with highest valuation for it). Guo and

Conitzer (2010) introduced the problem and considered the class of increasing-price mechanisms.

They showed that no increasing-price mechanism can obtain an approximation factor better than

0.5 as the number of items goes to infinity. However, they left open the problem of whether better

mechanisms can be found by focusing on more general families of incentive-compatible mechanisms.

Han et al. (2011, Theorem 4) generalized this result to all swap-dictatorial mechanisms and posed

as an open question whether the impossibility generalizes beyond swap-dictatorial mechanisms.

In later work, Cole et al. (2013a) and Cheung (2016) designed incentive-compatible fair division

mechanisms that achieve approximation factors better than 0.5, but these mechanisms allow some
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items (or parts of items) to remain unallocated, whereas both Guo and Conitzer and Han et al.

restricted to non-wasteful mechanisms. It has remained an open question whether any non-wasteful

fair division mechanism exists that achieves an approximation factor better than 0.5.

By combining Theorem 6 with the result of Han et al. (2011, Theorem 4) that no swap-dictatorial

mechanism can achieve an approximation to optimal utilitarian welfare better than 0.5 for all m,

we arrive at the following corollary, closing the open question posed by Han et al. (2011) subject

to smoothness. Note that anonymity does not appear as a condition in Corollary 2 because it is

known that if a non-anonymous mechanism achieves an approximation factor of α, there exists

an anonymous mechanism that achieves an approximation factor of at least α (Guo and Conitzer

2010).

Corollary 2. For n= 2 agents, if a mechanism A is smooth, weakly incentive compatible and

non-wasteful, then A does not achieve an approximation factor better than 0.5 for all m.

Observe that Corollary 2 implies that any smooth and incentive-compatible mechanism achieving

an approximation factor better than 0.5—as those of Cole et al. (2013a) and Cheung (2016) do—

must be wasteful.

5.3. Revisiting Incentive-Compatible Fair Division Mechanisms from the Literature

Given Lemma 1, we now know that all incentive-compatible, anonymous, smooth, and non-wasteful

mechanisms for n= 2 agents do take the form of a CSR with a particular choice of proper scoring

rule R. In this section, we revisit four mechanisms that were suggested in the literature and cast

them into the CSR framework, spelling out the concrete proper scoring rules that they correspond

to. Interpreting these known mechanisms in this way often allows for a more compact representa-

tion. Going forward, we believe this will also facilitate the design and simplify the analysis of new

mechanisms in this space.

Revisiting Guo and Conitzer. Guo and Conitzer (2010) initiated the study of incentive-

compatible utilitarian welfare approximation. In Sections 4 and 5, they introduce a family of linear

increasing-price (LIP) mechanisms, which are parameterized by a parameter a. Interestingly, this

family of mechanisms is tightly connected to the well-known logarithmic scoring rule (Good 1952)

defined by Rl(yi, k) = ln(yi,k). In particular, each member of the LIP family can be expressed

as a CSR. For m= 2, the one-dimensional report space allows for a compact expression13 of the

corresponding scoring rule, which, surprisingly, turns out to be the (weakly) proper truncated-log

scoring rule Rt−l:

13 For m> 2, the corresponding CSR, as for m= 2, also makes a case distinction depending on yi. If
mink{yi,k}
maxk{yi,k}

≥ 1
ea

,

i.e., if no outcome is assigned too little probability mass, then Rt−l(yi, k) = 1
a

ln(yi,k) + 1
a

(ln(ea +m− 1)). If this
condition does not hold, Rt−l does not have a concise description, but is defined in such a way that it remains proper.
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Rt−l(yi, k) =


0 if yi,k ∈

[
0, 1

1+ea

]
1
a

ln(yi,k) + ln(1+ea)

a
if yi,k ∈

(
1

1+ea
, ea

1+ea

)
1 if yi,k ∈

[
ea

1+ea
,1
]

Observe that, if the probability report yi,k is near 1 or 0—with the concrete range around 1 and 0

determined by a—then the report is scored with the highest or lowest possible score (depending on

the outcome). For reports in the “middle range” the score is computed using the logarithmic scoring

rule, transformed to yield scores in between 0 and 1. In practice, this procedure of truncation

followed by transformation to yield scores in between 0 and 1 is often applied to the logarithmic

scoring rule in an effort to preserve the rule’s beneficial information-theoretic properties for some

range of reports while also guaranteeing bounded, non-negative scores.

Proposition 3. For m= 2, the Linear Increasing Price Mechanism (LIP) with parameter a of

Guo and Conitzer (2010) is CRt−l.

Revisiting Han et al. Han et al. (2011, Definition 5) suggest the Sphere Mechanism, which,

for n= 2, achieves an approximation factor that is strictly higher than 0.5 if the valuation vectors

are bounded in the sense that yi,k ≤ C/m for some constant C and all i ∈ {1,2}, k ∈ [m]. Recall

from Corollary 2 in Section 5.2 that any approximation better than 0.5 is impossible for smooth

mechanisms and general valuations. As it turns out, Han et al. implicitly reinvent the well-known

spherical scoring rule (Roby 1965, Jose 2009), scaled by
√
m

C
:

Rs(yi, k) =

√
m

C
· yi,k
||yi||

Proposition 4. The Sphere Mechanism of Han et al. (2011, Definition 5) is CRs.

Note that for the remainder of the paper, we set
√
m

C
:= 1.

Revisiting Cheung. Cheung (2016, Section 4) designs a mechanism for n = 2 and m = 2,

achieving a 5
6

utilitarian welfare approximation, currently the best-known for this setting.14 His

mechanism is the CSR with the following proper scoring rule, defined for k ∈ {1,2}:15

14 Cheung provides a computer proof that this bound cannot be improved to 5
6

+ ε with ε < 109, so that 5
6

is likely
optimal. Note that this bound applies only to the case of m= 2, so it does not contradict the bound of 0.5 for general
m.

15 As a side note, applying the correspondence to this fair division mechanism has an interesting implication for

the corresponding wagering mechanism C
RCheung. In particular, Theorem 4 of Cheung (2016) and Proposition 5

immediately yield a formal guarantee on the sum of subjective expected utilities that the mechanism enables.
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RCheung(yi, k) =


0 if yi,k ∈ [0, 1

5
]

1
3

(
− 1
yi,k
− ln(yi,k) + 5− ln(5)

)
if yi,k ∈ ( 1

5
, 1
2
]

1− 1
3

ln
(
5yi,3−k

)
if yi,k ∈ ( 1

2
, 4
5
]

1 if yi,k ∈ ( 4
5
,1]

Proposition 5. The mechanism of Cheung (2016, Section 4) is CRCheung.

Revisiting Aziz and Ye. Aziz and Ye (2014) present the Constrained Serial Dictatorship

(CSD) mechanism for cake cutting. Since cake cutting is a generalization of the fair division setting

we consider in this paper, CSD can be applied to our setting in a straightforward manner. To

define CSD, consider fixing an order of the agents. Going through this order, each agent receives

the m/n items (if m/n is not an integer, agents receive only a fraction of some items) that they

value the most out of the remaining items, with ties broken in favor of lower-indexed items.16 For

example, if m = 3 and n = 2, then the first agent receives their most-preferred item and half of

their second-most-preferred item while the second agent receives the remaining items. The output

of CSD is the expected allocation over all agent orderings.

For n= 2, CSD corresponds to the CSR with the proper scoring rule that rewards an agent i

with a score of 1 if the realized outcome is among the m/2 most likely outcomes according to yi.

Let S denote the set of bm
2
c outcomes that have the most probability mass according to yi, with

ties broken in favor of lower-indexed outcomes. Similarly, let S denote the set of bm
2
c outcomes

that have the least probability mass according to yi, with ties broken in favor of higher-indexed

outcomes. In case m is odd, let S = [m] \ (S ∪S) denote the remaining outcome.

RCSD(yi, k) =

 1 if k ∈ S
1
2

if k ∈ S
0 if k ∈ S

Proposition 6. For n= 2, the Constrained Serial Dictatorship (CSD) mechanism of Aziz and

Ye (2014) is CRCSD.

5.4. Closed Form Expression for Social Welfare

In Section 5.1, Lemma 1 we have seen that for n = 2, all anonymous, incentive-compatible, and

non-wasteful mechanisms take the form of a Competitive Scoring Rule (subject to smoothness). We

have also seen that they are parameterized by a choice of scoring rule R. But which R should we

choose? In Section 5.3 we saw four possible choices, but in principle we can choose from infinitely

many (because every convex function gives rise to a proper scoring rule). In this section we take

the perspective of utilitarian and Nash welfare and provide closed-form expressions for them as a

16 The tiebreaking order is arbitrary but we align it with the index for simplicity.
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function of R. In doing so, we gain a deeper understanding of which rules perform well for which

reports and why. As it turns out, there is a tight connection between these welfare measures and R’s

expected score function. Interestingly, visually inspecting the plot of the expected score functions

already allows a judgment as to which rule will perform best for a given pair of reports.

Theorem 7. Let n= 2 and consider Competitive Scoring Rule CR, defined using scoring rule R

with associated expected loss function LR. Then, the utility of agent i is

ui(CRi (y),yi) =
1

2
+

1

2
LR(yi,y3−i). (2)

Hence, Competitive Scoring Rule CR achieves utilitarian welfare

U(CR(y),y) =
1

2
+

1

4

(
LR(y1,y2) +LR(y2,y1)

)
(3)

and Nash welfare

N(CR(y),y) =
1

2
·
√

(1 +LR(y1,y2)) (1 +LR(y2,y1)). (4)

Observe that utilitarian welfare is simply 0.5 plus half the average of the two losses. The expected

loss functions of standard scoring rules are known (Gneiting and Raftery 2007, p. 363), so plugging

them into Equations 3 and 4 of Theorem 7 immediately gives rise to the corresponding closed-

form solutions for utilitarian and Nash welfare. For example, the expected loss of the quadratic

scoring rule is the Euclidean distance LRq(pi,yi) =
∑m

k=1(pi(k)−yi(k))2 and so the CSR with the

quadratic scoring rule yields utilitarian welfare

U(CRq(y),y) =
1

2
+

1

4

(
LRq(y1,y2) +LRq(y2,y1)

)
=

1

2
+

1

4

(
m∑
k=1

(
y1(k)−y2(k)

)2
+

m∑
k=1

(
y2(k)−y1(k)

)2)

=
1

2
+

1

2

m∑
k=1

(
y1(k)−y2(k)

)2
=

1

2
+

1

2
LRq(y1,y2).

The CSR with the quadratic scoring rule is actually an interesting rule in its own right because

it is the unique incentive-compatible fair division mechanism that is equitable (Brams and Taylor

1996), subject to the technical conditions of Lemma 1. That is, it guarantees equal utility to both

agents. To see this, note that LRq is symmetric in its two arguments and that Rq is the only proper

scoring rule with this property (Savage 1971).

In order to provide a more visual interpretation of Theorem 7, we restrict attention to the case

of m= 2, where a belief pi = (pi,1, pi,2) can be represented by a single number. In particular, we
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Figure 1 The expected score functions GR(pi) (see p. 12) for m= 2 and different choices of R. Note that the

order in which the functions are presented in the legend matches their order at pi = 0.5.

write pi to represent the probability that agent i places on outcome 2, i.e., pi := pi,2. (Analogously,

we write yi for the corresponding report about outcome 2.) In Figure 1, we plot the expected score

functions GR(pi) associated with each of the four scoring rules described in Section 5.3 as well as

that of the quadratic scoring rule.

Using Theorem 7, we can write the utilitarian welfare in terms of the expected score func-

tion GR(pi). Consider Competitive Scoring Rule CR, defined using scoring rule R with associated

expected score function GR. The utilitarian welfare that CR achieves on reports y1, y2 is

U(CR(y),y) =
1

2
+

1

4
(y1− y2)

(
dGR(y1)− dGR(y2)

)
, (5)

where dGR(yi) is the derivative17 of GR at yi. To see this, note that LR(yi, y3−i) can be expressed

as LR(yi, y3−i) =GR(yi)−GR(y3−i)− (yi−y3−i)(dGR(yi)), as is well known (Savage 1971, Gneiting

and Raftery 2007), so that Equation 5 follows from Equation 3 using simple algebra.18

Let us conclude by reflecting on what Theorem 7 and its implied Equation 5 tell us about

designing incentive-compatible mechanisms for two agents and two items. Suppose that y1 and y2

17 If GR(yi) is not differentiable, dGR(yi) is a subgradient.

18 One can perform a similar exercise to write the Nash welfare in terms of the expected score function GR, but the
resulting expression is not as informative.
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are fixed. Seeking to maximize utilitarian welfare, the mechanism designer should then choose a

scoring rule with corresponding expected score function GR such that the difference |dGR(y1)−

dGR(y2)| is maximized. If the mechanism designer has distributional knowledge about reports

y1 and y2, then the optimal scoring rule is the one that maximizes the value of Equation 5 in

expectation. Informally speaking, the utilitarian welfare is higher when using a scoring rule whose

GR has high curvature (high rate of change in gradient) in the region in which y1 and y2 are

expected to lie. For example, if y1 and y2 are guaranteed to lie on opposite sides of 0.5, then CSD

is the best choice since the corresponding expected score function maximizes |dGR(y1)−dGR(y2)|.

However, if y1 and y2 are expected to both be greater (or both be less) than 0.5, then CSD is a bad

choice since its expected score function is linear on both sides of 0.5. From this it follows that the

utilitarian welfare will be exactly 1 because the expected losses of reporting y1 instead of y2, and

vice versa, are both 0 (the agents are indifferent between reporting y1 and y2). In contrast, if y1

and y2 are expected to both be close to 0 or both be close to 1, then setting R to be the quadratic

score yields the highest utilitarian welfare since it has the highest curvature around the endpoints.

We explore this further in the following section using simulations.

6. Comparison of Mechanisms

The correspondence from Section 3 implies that any wagering mechanism can be viewed as a fair

division mechanism and vice versa. Table 1 provides, to our knowledge, the complete set of known

incentive-compatible mechanisms from both literatures, including a summary of their respective

properties. We provide more details of these mechanisms in the e-companion (Section EC.1). For

clarity, these properties are presented in the fair division setting, and they are either (1) known

results in fair division, (2) following from known results in wagering and the correspondence devel-

oped in Section 3, or (3) proven separately (in Section EC.1). The properties proven separately are

marked with a cross in the table. In the remainder of this section, we explore, via simulation, the

performance of the mechanisms from Table 1, evaluating them according to both utilitarian and

Nash welfare.

We begin, in Section 6.1, by considering the base setting with n = 2 agents and m = 2 items,

which is a commonly considered special case (Guo and Conitzer 2010, Han et al. 2011, Cheung

2016). As seen in Section 5.1, CSRs comprise the complete set of non-wasteful mechanisms in this

setting, subject to mild technical conditions. We include five representative members of the CSR

family parameterized by their respective scoring rules: the four identified in Section 5.3 and the

commonly used quadratic scoring rule (Proposition 1). Then, in Section 6.2, we consider larger

numbers of agents and items.
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Incentive
Compatible

Pareto Optimal Proportional Envy-Free Non-Wasteful

CEEI No Yes Yes Yes Yes
CSR Strict∗ No Yes Yes Yes

NAWM Strict∗ No Yes No† No
CSD∗∗ Weak No Yes No Yes

DCA∗∗∗ Weak No Yes Yes† No
PA Weak No No Yes No

SDM Weak No No Yes No
PAmax

∗∗∗∗ Weak No Yes† Yes† No†

Table 1 Comparison of properties satisfied by Competitive Equilibrium from Equal Incomes (CEEI, Foley 1967,

Varian 1974), Competitive Scoring Rules (CSR, Kilgour and Gerchak 2004, Lambert et al. 2008), No-Arbitrage

Wagering Mechanisms (NAWM, Chen et al. 2014), Constrained Serial Dictatorship (CSD, Aziz and Ye 2014), the

Double Clinching Auction (DCA, Freeman et al. 2017), Partial Allocation (PA, Cole et al. 2013b), Strong

Demand Matching (SDM, Cole et al. 2013b), and PAmax (Cole et al. 2013a). ∗CSRs and NAWMs are strictly

incentive-compatible when used with a strictly proper scoring rule. ∗∗Computing the CSD allocation is known to

be #P-complete (Aziz et al. 2013), which makes it infeasible to compute for larger n; an approximate, sampled

version is not guaranteed to output proportional solutions. ∗∗∗DCA is only defined for m= 2 items and n≥ 4

agents. It relies on a continuous ascending auction, of which we implement an approximate version that is not

guaranteed to inherit all of the original mechanism’s properties. ∗∗∗∗PAmax is only defined for n= 2 agents. The

same holds for a slightly extended version due to Cheung (2016), which loses proportionality for a small

improvement of the approximation factor (it is unknown if this extension preserves envy-freeness). †These

properties are proven in Section EC.1 of the e-companion.

6.1. Two Agents, Two Items

To generate reports in this base setting, we draw from three sets of beta distributions. The first

contains beta distributions with α= β, generating reports centered at (0.5,0.5), with the uniform

distribution corresponding to the special case of α = β = 1. Increasing α and β leads to higher

concentration around the mean (0.5,0.5) and hence more similar reports. We report the value of α

as the concentration, which we increase in increments of 0.1. The beta distributions in the second

set are no longer centered at (0.5,0.5). Instead, we generate “biased” reports with mean (0.25,0.75)

by using α = 3β. Distributions in the third set are centered at (0.05,0.95) by setting α = 19β.

Analogous to the first set, we again vary the concentration of the reports around the mean by

increasing α, now subject to α= 3β and α= 19β, respectively.

Figures 2 and 3 display the results, averaged over 1000 samples per parameter choice. For both

social welfare measures, the values are normalized so that (1) the allocation that maximizes the

respective welfare measure achieves a welfare of 100 and (2) the uniform allocation achieves a wel-

fare of zero. Thus, the welfare we report is the average fraction of the maximum possible improve-

ment over the uniform allocation that the mechanisms achieve. Note that the uniform allocation

mechanism’s robust incentive and fairness guarantees make it preferable to any mechanism that
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Figure 2 Utilitarian welfare (left side) and Nash welfare (right side) of different mechanisms with n= 2 agents

and m= 2 items. Reports are centered around (0.5,0.5) and the x axis varies the level of concentration around

that center.

does not outperform it in welfare, so that the mechanisms of practical interest obtain normalized

welfare between 0 and 100. The allocation maximizing utilitarian welfare allocates each item to the

agent who values it the highest. For Nash welfare, Competitive Equilibrium from Equal Incomes

(CEEI, Foley 1967, Varian 1974) always achieves a value of 100 because it maximizes that welfare

measure (Arrow and Intriligator 1982, Volume 2, Chapter 14). The incentive-compatible mecha-

nisms that we consider achieve welfare values less than 100 since they additionally incorporate

incentive compatibility constraints.19

The mechanisms included in Figures 2 and 3 are those that are defined for the setting with

n = 2 agents and m = 2 items while also achieving normalized welfare values of at least 0 for

some parameter choice. This excludes the Double Clinching Auction (DCA, Freeman et al. 2017),

because it is only defined for n≥ 4, as well as Partial Allocation (PA, Cole et al. 2013b), Strong

Demand Matching (SDM, Cole et al. 2013b), and the extended version of PAmax due to Cheung

(2016), all of which had welfare values below 0 for all parameter choices. For the family of No-

Arbitrage Wagering Mechanisms (NAWM, Chen et al. 2014), we include the representative with

the quadratic scoring rule. The right side of Figure 3 excludes CEEI and PAmax (Cole et al. 2013a)

for presentational reasons.

We now discuss some interesting behavior that can be seen in the plots. First, observe in the

uniform setting presented in Figure 2 that the relative performance of the mechanisms is essentially

identical across the two welfare measures. This is also the case for the two biased settings, and

the discussion thus focuses on utilitarian welfare. Figure 3 shows the results for biased reports

19 As an example, consider n = 2 agents and m = 2 items with v1 = (1,0) and v2 = (0.6,0.4). The non-normalized
utilitarian welfare values of the uniform allocation mechanism (both agents receive half of both items) and the welfare-
maximizing mechanism (agent 1 receives good 1, agent 2 receives good 2) are 0.5 and 0.7, respectively. If a given
mechanism achieves non-normalized utilitarian welfare of 0.6, it would achieve a normalized utilitarian welfare of 50.
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Figure 3 Utilitarian welfare of different mechanisms with n= 2 agents and m= 2 items for two different biases.

Reports are centered around (0.25,0.75) (left side) and (0.05,0.95) (right side), and the x axis varies the level of

concentration around those centers. On the right side, CEEI (welfare values between 52 and 55) and PAmax

(welfare value 0 everywhere) are left out for presentational reasons and the y axis is scaled differently than in the

other plots we present.

under utilitarian welfare, with the corresponding plots for Nash welfare to be found in the e-

companion (Section EC.2). The mechanisms’ similar performance across the two welfare measures

is not surprising. For intuition, note that on allocations where some agents receive very low utility

while others receive very high utility, Nash and utilitarian welfare would differ. However, since

all mechanisms from Table 1 are proportional or envy-free (and, more generally, designed to be

“fair”), one would not expect big differences between utilitarian and Nash welfare.

Second, observe the performance of CSD in the three different settings. As we discussed in

Section 5.4, CSD is a good choice when the two agents are likely to disagree as to which of

the two items is more valuable, i.e., when their reports lie on opposite sides of (0.5,0.5). For

unbiased distributions (Figure 2), that kind of disagreement happens frequently and we see that

CSD outperforms the other incentive-compatible mechanisms. Additionally, the performance is

unaffected by the concentration since changing the concentration does not affect the probability

that the agents disagree. This insight can in fact be used to compute CSD’s normalized welfare in

this setting: when the agents agree, CSD coincides with the uniform allocation. When the agents

disagree, CSD coincides with the allocation that maximizes utilitarian welfare (i.e., giving every

item to the agent who values it higher). The probability of each of these two cases is 0.5, so the

normalized utilitarian welfare is 0.5 · 0 + 0.5 · 100 = 50, which matches CSD’s behavior in Figure 2.

The same normalized welfare of 50 holds with respect to Nash welfare as it is still the case that CSD

obtains the maximal possible value with probability 0.5 and that it yields the uniform allocation

otherwise.

For the distributions with mean (0.25,0.75), CSD continues to achieve some gains from trade

for low concentrations because the distribution of reports has high enough variance for agents
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to sometimes value the first item higher than the second item (left side of Figure 3). As the

concentration increases, however, the reports converge to (0.25,0.75), so that the agents almost

never disagree on which item is more valuable. This yields normalized utilitarian welfare of zero as

CSD then coincides with the uniform allocation. For the most biased setting with mean (0.05,0.95),

even for low concentrations, agents almost never disagree about which of the two items is more

valuable, so that CSD does not achieve any gains from trade (right side of Figure 3).

Let us now consider the performance of the other mechanisms. In Figure 2, we see that the

Competitive Scoring Rule with the spherical rule, CRs , outperforms the other non-CSD Competitive

Scoring Rules at high concentrations. This is to be expected as per the discussion in Section 5.4: if

we fix reports y1 and y2, we know from Equation 5 that the utilitarian welfare of CR is proportional

to the difference |dGR(y1) − dGR(y2)|. If both y1 and y2 are close to 0.5, as they are for high

concentrations, then this difference is proportional to d2GR(0.5), the second derivative of GR at

0.5. For the spherical scoring rule we have d2GRs(0.5) = 2.828, for the quadratic scoring rule

and the truncated log scoring rule (with a = 2), we have d2GRq(0.5) = d2GRt−l(0.5) = 2, and for

RCheung we have d2G
RCheung(0.5) = 1.33. At high concentrations, it can be checked that the relative

performance of the mechanisms is consistent with these second derivatives. Note that the welfare

values in the figures are not exactly proportional to the numbers given here, both because we

normalize the welfare values in the plots and because the concentration values are not high enough

to observe fully limiting behavior.

The relative performance of the different Competitive Scoring Rules in Figure 3 can be explained

analogously, now examining the second derivatives of the corresponding expected score functions

at 0.75 and 0.95, respectively. For a bias of (0.25,0.75), CRCheung achieves the highest welfare as

can be predicted from visually inspecting its high curvature at p= 0.75 in Figure 1. As before, we

can also verify the relative performances at (0.25,0.75) mathematically by twice differentiating the

expected score functions at 0.75. For a bias of (0.05,0.95), CRq achieves the highest welfare, with

CRt−l , CRCheung , and CRCSD achieving no gains from trade at higher concentrations because the

expected score functions of their respective scoring rules are linear around 0.95.20

Finally, observe that the PAmax mechanism of Cole et al. (2013a) performs poorly in all three

settings. Arguably, this is not a surprising finding given that it is optimized for worst-case perfor-

mance and for all values of m. In particular, it often reverts to the uniform allocation, sacrificing

any gains from trade.

20 We observe that normalized welfare tends to decrease as agents’ reports become more similar (either due to higher
concentration or increased bias). Note that while similar reports limit the potential gains from trade, it is not obvious
that normalized welfare should decrease since this limitation applies to all mechanisms, whether incentive compatible
or not. At a high level, the decrease in normalized welfare is observed because incentive-compatible mechanisms are
forced to be less discriminative than the utilitarian welfare maximizing mechanism, which simply allocates the items
to whoever claims to value them more highly.



26 Freeman et al.: An Equivalence Between Fair Division and Wagering Mechanisms

10 20 30 40 50
n

0

20

40

60

80

100

Ut
ilit

ar
ia

n 
W

el
fa

re
 (n

or
m

al
ize

d)

CEEI
CSR (Quadratic)
NAWM (Quadratic)
CSD
DCA
SDM

10 20 30 40 50
n

0

20

40

60

80

100

Ut
ilit

ar
ia

n 
W

el
fa

re
 (n

or
m

al
ize

d)

CEEI
CSR (Quadratic)
NAWM (Quadratic)
CSD
DCA
SDM

Figure 4 Utilitarian welfare of different mechanisms with m= 2 items for uniform (left side) and biased (right

side) reports. The number of agents n varies from 2 to 50 (x axis).

6.2. Many Agents, Many Items

We now turn to settings with larger values of n and m. As was the case in Section 6.1, the

observed results between utilitarian and Nash welfare are similar, so we focus here on the results

for utilitarian welfare. The corresponding plots for Nash welfare can be found in the e-companion

(Section EC.2). In Figure 4, we present results for m= 2 items and vary n from 2 to 50. As before,

we generate both uniform (left side) and biased reports (right side). On the left side of Figure 5,

we present results for n = 10 agents and vary the number of items between m = 2 and m = 40

under uniform sampling. On the right side of Figure 5, the number of agents is also n= 10 but the

number of items is fixed to m= 20 and we use biased sampling. For uniform sampling, we draw

reports uniformly at random from the simplex ∆m using a Dirichlet distribution with parameters

(α1, . . . , αm) = (1, . . . ,1). For biased sampling, generalizing the Beta distribution from Section 6.1,

we use a Dirichlet distribution with parameters (α1, α2, α3, . . . , αm) = (α1,3α1,5α1, . . . , (2m−1)α1).

For example, for m= 5, this yields reports with mean (0.04,0.12,0.2,0.28,0.36).

The mechanisms we evaluate in Figures 4 and 5 are, with the exception of DCA, those from

Table 1 that are defined for all values of n ≥ 2 and m ≥ 2. PA only appears on the left side of

Figure 5 because it had welfare values below 0 for all parameter choices in the other settings. For

the same reason, SDM does not appear on the right side of Figure 5. For visual clarity, we only

include the Competitive Scoring Rule with the quadratic scoring rule. The performance of CSRs

with other scoring rules is similar. Also note that while CSD is a Competitive Scoring Rule when

restricted to n= 2, it is not a member of that family for higher values of n. Because computing

the CSD allocation is #P-complete (Aziz et al. 2013), we use an approximate version of CSD for

all n≥ 8, where we take the average allocation over 1000 randomly sampled permutations.

Considering the setting with many agents and few items as depicted in Figure 4, several themes

stand out. SDM and DCA outperform all other incentive-compatible mechanisms, which can be



Freeman et al.: An Equivalence Between Fair Division and Wagering Mechanisms 27

5 10 15 20 25 30 35 40
m

0

20

40

60

80

100

Ut
ilit

ar
ia

n 
W

el
fa

re
 (n

or
m

al
ize

d)

CEEI
CSR (Quadratic)
NAWM (Quadratic)
CSD
PA
SDM

5 10 15 20 25 30
Concentration

0

20

40

60

80

100

Ut
ilit

ar
ia

n 
W

el
fa

re
 (n

or
m

al
ize

d)

CEEI
CSR (Quadratic)
NAWM (Quadratic)
CSD

Figure 5 Utilitarian welfare of different mechanisms with n= 10 agents for uniform reports varying m from 2 to

40 (left side) and biased report with m= 20 varying concentration (right side).

explained by the fact that both of these mechanisms are designed to approximate CEEI. Note that,

in contrast to SDM, DCA satisfies proportionality. This is crucial in settings where stakeholders

can only accept mechanisms that guarantee every participant to be at least as well off as uniformly

distributing the resources at hand. On the other hand, DCA’s restriction to m= 2 items limits its

applicability, so that SDM significantly outperforms all other incentive-compatible mechanisms for

settings with many agents and m≥ 3 items. CSD performs well under uniform sampling, but its

performance degrades significantly under biased reports, which is consistent with the n = m = 2

results from Section 6.1. CSRs do badly for higher n, which is unsurprising because it is known

from wagering that CSR payments never exceed twice the agent’s wager, which, in the fair division

setting, translates to saying that no agent can receive more than a 2/n fraction of any item.21

Turning to the setting with many items relative to agents as depicted in Figure 5, we see that

CSD achieves the highest welfare for almost all values of m under uniform sampling (left side) and

all values of concentration in the biased-report setting (right side). No other incentive-compatible

mechanism achieves any noticeable improvement over the uniform allocation for biased reports.

The robust performance of CSD is particularly notable considering the results observed in Sec-

tion 6.1, where it is substantially outperformed by other mechanisms for biased reports and high

concentrations. The intuition for this result is that, in our setup, as m increases, agents more fre-

quently disagree with respect to the items’ ordinal valuations, which is known to increase welfare

from CSD. Conversely, we see the performance of SDM declining as m increases, which is to be

expected because SDM is designed to perform well when n is large relative to m. For uniform

reports, PA does achieve some gains from trade as m increases. For intuition, note that PA is

known to perform well when no agent imposes too much externality on the other agents. This is

21 This follows from Equation 1 and the fact that R is bounded in [0,1].
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the case when m is large relative to n and reports are uniform because one would not expect much

agreement between the agents’ valuations. Finally, note that even for uniform reports, CSRs and

NAWMs both achieve very little gain from trade.

7. Conclusion

In this paper, we show that the fair division and wagering settings are, in fact, the same. Given

that the corresponding research communities have previously studied these settings in isolation,

it is no surprise that their equivalence has immediate implications. In particular, applying the

correspondence to Competitive Scoring Rules, arguably the most prominent class of wagering

mechanisms, immediately leads to the first incentive-compatible fair division mechanism that is

both fair (proportional and envy-free) and responsive to agent preferences. Moreover, leveraging a

result from the wagering literature, we can characterize, subject to mild technical conditions, all

non-wasteful, incentive-compatible fair division mechanisms for two agents as Competitive Scoring

Rules. Because they are parameterized by proper scoring rules, this reduces the mechanism design

problem in this setting to one of proper scoring rule selection.

In comparing the existing mechanisms from the fair division literature with the new mechanisms

gained through the correspondence, several rules of thumb for application become apparent. For

the base setting of two agents and two items, both axiomatic properties and our simulation results

suggest that Competitive Scoring Rules are superior to other, wasteful mechanisms. An appropriate

choice of parameter (i.e., scoring rule) is determined by the area in which the agents’ reports are

expected to lie. When the number of agents is large relative to the number of items, our simulation

results suggest that Strong Demand Matching should be used. (For two items, the Double Clinching

Auction performs similarly well in simulation but additionally satisfies proportionality.) Conversely,

when the number of items is large relative to the number of agents, Constrained Serial Dictatorship

proves surprisingly robust.

Going forward, the connection we revealed opens up the possibility of applying any new results

developed in one setting to the other, an approach we expect to be fruitful as both fields develop.
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mechanisms for two agents, subject to two mild technical conditions (Lemma 1). Leveraging this

characterization, Section 5 casts known fair division mechanisms into this scoring rule framework

and presents improved bounds on the approximation to optimal utilitarian welfare that any fair

division mechanism can achieve (Corollary 2). Finally, Section 6 contains new and significantly

expanded simulations comparing all known incentive-compatible mechanisms.
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Appendix

A. Proof of Theorem 1

Theorem 1. A fair division mechanism A is (weakly, strictly) incentive compatible if and only if the

corresponding wagering mechanism B is (weakly, strictly) incentive compatible.

Proof. First, suppose that B is weakly incentive compatible. Let i∈ [n] and suppose that yi 6= vi. Then

ui(Ai((y1, . . . ,vi, . . . ,yn)),vi) = vi · Ai((y1, . . . ,vi, . . . ,yn))

=

m∑
k=1

vi,k · Ai,k((y1, . . . ,vi, . . . ,yn))

=

m∑
k=1

vi,k · Bi((y1, . . . ,vi, . . . ,yn), k)

= E
X∼vi

Bi((y1, . . . ,vi, . . . ,yn),X)

≥ E
X∼vi

Bi((y1, . . . ,yi, . . . ,yn),X)

=

m∑
k=1

vi,k · Bi((y1, . . . ,yi, . . . ,yn), k)

=

m∑
k=1

vi,k · Ai,k((y1, . . . ,yi, . . . ,yn))

= vi · Ai((y1, . . . ,yi, . . . ,yn))

= ui(Ai((y1, . . . ,yi, . . . ,yn)),vi).
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The third and sixth equalities follows from the definition of the correspondence, and the inequality from

weak incentive compatibility of B. Note that if B is strictly incentive compatible then the inequality is strict,

implying that A is strictly incentive compatible.

Next, suppose that A is weakly incentive compatible. Let i∈ [n] and suppose that yi 6= pi. We have:

E
X∼pi

Bi((y1, . . . ,pi, . . . ,yn),X) =

m∑
k=1

pi,k · Bi((y1, . . . ,pi, . . . ,yn), k)

=

m∑
k=1

pi,k · Ai,k((y1, . . . ,pi, . . . ,yn))

= pi · Ai((y1, . . . ,pi, . . . ,yn))

≥ pi · Ai((y1, . . . ,yi, . . . ,yn))

=

m∑
k=1

pi,k · Ai,k((y1, . . . ,yi, . . . ,yn))

=

m∑
k=1

pi,k · Bi((y1, . . . ,yi, . . . ,yn), k)

= E
X∼pi

Bi((y1, . . . ,yi, . . . ,yn),X).

The second and fifth equalities follow from the definition of the correspondence, and the inequality from

weak incentive compatibility of A. Once again if A is strictly incentive compatible then the inequality is

strict, implying that B is strictly incentive compatible. �

B. Proof of Theorem 2

Theorem 2. An incentive-compatible fair division mechanism A is proportional if and only if the corre-

sponding incentive-compatible wagering mechanism B is individually rational.

Proof. First, suppose that B is individually rational and weakly incentive compatible. Let i ∈ [n]. We

have:

ui(Ai(y),yi) = yi · Ai(y) =

m∑
k=1

yi,k · Ai,k(y) =

m∑
k=1

yi,k · Bi(y, k) = E
X∼yi

Bi(y,X)≥ 1

n
.

The third equality follows from the definition of the correspondence. The inequality follows from individual

rationality (there exists a report for which the inequality holds) and weak incentive compatibility (no report

yields higher utility than the truthful report). Next, suppose that A is proportional and let i∈ [n]. Assume

that agent i truthfully reports yi = pi (this is sufficient since for individual rationality we must only show

that some report yields an expected payoff of at least 1
n

).We have:

E
X∼pi

Bi(y,X) =

m∑
k=1

pi,k · Bi(y, k) =

m∑
k=1

pi,k · Ai,k(y) = pi · Ai(y)≥ 1

n

The second equality follows from the definition of the correspondence and the inequality from proportionality.

�

C. Proof of Theorem 3

Theorem 3. If an anonymous, incentive-compatible wagering mechanism is normal then the correspond-

ing anonymous, incentive-compatible fair division mechanism is envy-free.
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Proof. We begin by showing that anonymity is preserved by the correspondence. Let i∈ [n], k ∈ [m], and

let σ be a permutation of [n]. Suppose that fair division mechanism A is anonymous. Then, for the wagering

mechanism B corresponding to A, we have

Bi((y1, . . . ,yn), k) =Ai,k((y1, . . . ,yn)) =Aσ(i),k((yσ−1(1), . . . ,yσ−1(n))) =Bσ(i)((yσ−1(1), . . . ,yσ−1(n)), k).

On the other hand, if B is anonymous, then

Ai,k((y1, . . . ,yn)) =Bi((y1, . . . ,yn), k) =Bσ(i)((yσ−1(1), . . . ,yσ−1(n)), k) =Aσ(i),k((yσ−1(1), . . . ,yσ−1(n))).

Having established that anonymity is preserved, we proceed by showing the contrapositive. Let A be an

anonymous, weakly incentive compatible fair division mechanism that is not envy-free. That is, there exist

agents i, j and profile of reports y such that

uj(Ai(y),yj) = yj · Ai(y)> yj · Aj(y) = uj(Aj(y),yj). (6)

Now, consider the profile y′ that is derived from y by changing i’s report to be yj and leaving all other

agents’ reports unchanged, that is, y′
i = yj and y′

j′ = yj′ for all j′ 6= i. By anonymity, it must be the case

that

Aj(y′) =Ai(y′). (7)

Further, because y′ and y differ only in the report of agent i, incentive compatibility says that

ui(Ai(y′),y′
i) = y′

i · Ai(y′)≥ y′
i · Ai(y) = ui(Ai(y),y′

i). (8)

Since y′
i = yj , Equation 8 is equivalent to

yj · Ai(y′)≥ yj · Ai(y). (9)

Combining Equations 7, 9, and 6 (in that order) yields

yj · Aj(y′) = yj · Ai(y′)≥ yj · Ai(y)> yj · Aj(y).

Taking θ = yj exhibits a violation of normality of the corresponding wagering mechanism:

EX∼θ Bi((y1, . . . ,y′
i, . . . ,yn),X) ≥ EX∼θ Bi((y1, . . . ,yi, . . . ,yn),X) but EX∼θ Bj((y1, . . . ,y′

i, . . . ,yn),X) >

EX∼θ Bj((y1, . . . ,yi, . . . ,yn),X). That is, agent i changing her report from yi to y′
i weakly increased agent

i’s expected payoff and strictly increased agent j’s expected payoff (both with respect to yj). This violates

normality since it is either the case that EX∼θ Bi((y1, . . . ,y′
i, . . . ,yn),X)>EX∼θ Bi((y1, . . . ,yi, . . . ,yn),X)

or that EX∼θ Bi((y1, . . . ,y′
i, . . . ,yn),X) = EX∼θ Bi((y1, . . . ,yi, . . . ,yn),X). In the former case normality

dictates that EX∼θ Bj((y1, . . . ,y′
i, . . . ,yn),X) < EX∼θ Bj((y1, . . . ,yi, . . . ,yn),X), while in the latter case

normality dictates that EX∼θ Bj((y1, . . . ,y′
i, . . . ,yn),X) = EX∼θ Bj((y1, . . . ,yi, . . . ,yn),X). In both cases

normality is violated. �
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D. Proof of Proposition 2

Proposition 2. Let R be a strictly proper scoring rule and let y be a profile of reports for which there

exist j, ` with yj 6= y`. Then the utility of every agent i∈ [n] under CSR CR is

ui(CRi (y),yi)> 1/n.

Proof. We prove the following stronger statement. It says that if an agent i receives strictly higher score

from R in expectation (according to i’s report) than some other agent j, then agent i receives utility strictly

higher than 1/n from Competitive Scoring Rule CR.

Lemma 2. Let R be a proper scoring rule. Then, for every profile of reports y ∈∆n
m and for all agents

i∈ [n] for which there exists an agent j 6= i with EX∼yi
R(yi,X)>EX∼yi

R(yj ,X),

ui(CRi (y),yi)> 1/n.

Proof of Lemma 2. Let y ∈∆n
m, i ∈ [n], and suppose that EX∼yi

R(yi,X)>EX∼yi
R(yj ,X) for some

j 6= i. Therefore,

ui(CRi (y),yi) =

m∑
k=1

yi,k · CRi,k(y)

=

m∑
k=1

yi,k ·

(
1

n
+

1

n

(
R(yi, k)− 1

n− 1

∑
` 6=i

R(y`, k)

))

=
1

n
+

1

n

(
m∑
k=1

yi,k ·R(yi, k)− 1

n− 1

∑
` 6=i

m∑
k=1

yi,k ·R(y`, k)

)

>
1

n
,

where the final inequality holds because
∑m
k=1 yi,k ·R(yi, k)≥

∑m
k=1 yi,k ·R(y`, k) for all `∈ [n] by properness

of R, and
∑m
k=1 yi,k ·R(yi, k)>

∑m
k=1 yi,k ·R(yj , k) by assumption. �

Proposition 2 follows as a corollary of Lemma 2. To see this, suppose that R is strictly proper and that

there exist agents j, `∈ [n] for which yj 6= y`. Let i∈ [n]. Then it cannot be the case that yi = yj and yi = y`.

Suppose without loss of generality that yi 6= yj . By strict properness of R, EX∼yi
R(yi,X)>EX∼yi

R(yj ,X).

Thus we can apply Lemma 2 to show that ui(CRi (y),yi) = yi · CRi (y)> 1/n. �

E. Proof of Theorem 5

Theorem 5. For n = 2 agents, a fair division mechanism A is swap-dictatorial if and only if A is a

Competitive Scoring Rule CR for some proper scoring rule R, i.e., if and only if Ai,k(y) = 1
2

+ 1
2

(
R(yi, k)−

R(y3−i, k)
)

for all i∈ {1,2} and all k ∈ [m].

Proof. We first prove the backward direction, that all CSRs are swap-dictatorial. To see this, note that

for n= 2, Equation 1 can be rewritten as

CRi,k(y) =
1

2
R(yi, k) +

1

2

(
1−R(y3−i, k)

)
. (10)

Equation 10 can be interpreted as selecting each agent i∈ {1,2} to be the dictator with probability 0.5. When

agent i is the dictator, she is allocated an R(yi, k) fraction of every item k with the remaining items being
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allocated to agent 3− i. The set of bundles D that is offered to the dictator is {(R(yi, k))k∈[m] : yi ∈∆m}. By

properness of R, the dictator is allocated a bundle that maximizes her utility. Therefore,A is swap-dictatorial.

We next show the forward direction, that all swap-dictatorial mechanisms are CSRs. Let A be a swap-

dictatorial mechanism. Define scoring rule R as follows:

R(yi, k) =

(
arg max

d∈D
ui(d,yi)

)
k

That is, for report yi and outcome k, R pays an amount equal to the fraction of item k that an agent receives

when she is the dictator with report yi. R is proper because, among available bundles/contingent payments,

the agent receives the one that maximizes her reported utility function. To see that A is a CSR, note that,

by definition, when agent i is the dictator, she receives R(yi, k) of every item k ∈ [m]. Similarly, when agent

3− i is the dictator, agent i receives 1−R(y3−i, k) of every item k ∈ [m]. In expectation over the two choices

of dictator, agent i receives

CRi,k(y) =
1

2
R(yi, k) +

1

2

(
1−R(y3−i, k)

)
of every item k ∈ [m]. �

F. Proof of Proposition 3

Proposition 3. For m= 2, the Linear Increasing Price Mechanism (LIP) with parameter a of Guo and

Conitzer (2010) is CRt−l .

Proof. Claim 5 of Guo and Conitzer (2010) describes the fraction of each item that an agent receives

when she is the dictator (recall that LIPs are swap-dictatorial). Since every anonymous swap-dictatorial

mechanism is a competitive scoring rule with the scoring rule defined by the menu of allocations offered to

the dictator, the proposition follows from applying simple algebra to Claim 5 of Guo and Conitzer (2010). �

G. Proof of Proposition 4

Proposition 4. The Sphere Mechanism of Han et al. (2011, Definition 5) is CRs .

Proof. The result follows directly from applying the equivalence to the Sphere Mechanism of Han et al.

(2011, Definition 5). �

H. Proof of Proposition 5

Proposition 5. The mechanism of Cheung (2016, Section 4) is C
RCheung .

Proof. The result follows from combining Cheung’s Observation 1 (which gives the CSR form) and his

Equation 6 (which gives the particular scoring rule), along with the equivalence. �

I. Proof of Proposition 6

Proposition 6. For n= 2, the Constrained Serial Dictatorship (CSD) mechanism of Aziz and Ye (2014)

is CRCSD .

Proof. For the purposes of this proof, let Si denote the set of bm
2
c outcomes that have the highest

valuation according to yi, with ties broken in favor of lower-indexed outcomes. Similarly, let Si denote the set

of bm
2
c outcomes that have the lowest valuation according to yi, with ties broken in favor of higher-indexed

outcomes. In case m is odd, let Si = [m] \ (Si ∪Si) denote the remaining item.
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Let k ∈ [m] and WLOG consider agent i. Since item k can be a member of Si, Si, or Si for each agent i,

there are nine mutually exclusive cases to consider. In each case, we verify that the fraction of item k allocated

to agent i by CSD is C
RCSD
i (y) = 1

2
+ 1

2
(RCSD(yi, k)+RCSD(y3−i, k)). Suppose that k ∈ Si. Then, whenever

agent i chooses first in the CSD ordering, she receives all of item k. If k ∈ S3−i, then agent 3− i also receives

all of item k when she chooses first. Thus, agent i is allocated a 0.5 = 1
2

+ 1
2
(RCSD(yi, k) +RCSD(y3−i, k))

fraction of item k by CSD. If k ∈ S3−i, then agent 3− i does not receive item k when she is the dictator.

So, in this case, agent i receives all of item k, which again aligns with 1
2

+ 1
2
(RCSD(yi, k) +RCSD(y3−i, k)).

Likewise, if k ∈ S3−i then agent 3− i receives exactly half of item k when she is the dictator, meaning that

agent i receives a 0.75 = 1
2

+ 1
2
(RCSD(yi, k) +RCSD(y3−i, k)) fraction of item k in total. It is easy to check

that the equivalence also holds in the remaining six cases. �

J. Proof of Theorem 7

Theorem 7. Let n = 2 and consider Competitive Scoring Rule CR, defined using scoring rule R with

associated expected loss function LR. Then, the utility of agent i is

ui(CRi (y),yi) =
1

2
+

1

2
LR(yi,y3−i). (2)

Hence, Competitive Scoring Rule CR achieves utilitarian welfare

U(CR(y),y) =
1

2
+

1

4

(
LR(y1,y2) +LR(y2,y1)

)
(3)

and Nash welfare

N(CR(y),y) =
1

2
·
√

(1 +LR(y1,y2)) (1 +LR(y2,y1)). (4)

Proof. Looking at the definition of CSRs (Definition 13 on p. 12), we see that, for n= 2, the CSR score

expected by agent i for truthfully reporting yi = pi can be written as:

E
X∼yi

[
CRi (y,X)

]
= E
X∼yi

[
1

2
+

1

2

(
R(yi,X)−R(y3−i,X)

)]
=

1

2
+

1

2
E

X∼yi
[R(yi,X)−R(y3−i,X)]

=
1

2
+

1

2
LR(yi,y3−i)

Following the definitions of utilitarian and Nash welfare (p. 5), we thus obtain

U(CR(y),y) =
1

2

(
1

2
+

1

2
LR(y1,y2) +

1

2
+

1

2
LR(y2,y1)

)
=

1

2
+

1

4

(
LR(y1,y2) +LR(y2,y1)

)
N(CR(y),y) =

√(1

2
+

1

2
LR(y1,y2)

)
·
(1

2
+

1

2
LR(y2,y1)

)
=

1

2
·
√

(1 +LR(y1,y2)) (1 +LR(y2,y1))

�
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Electronic Companion

EC.1. Description of Known Mechanisms

Table 1 on page 22 gives an overview of all known incentive-compatible mechanisms. Competitive

Scoring Rules were introduced in Section 4; what follows is a description of the other mechanisms

from that table.

Competitive Equilibrium from Equal Incomes (CEEI).

Competitive Equilibrium from Equal Incomes has been explored in both the fair division and the

wagering settings. In the context of fair division, CEEI endows each agent i with 1 unit of currency

and simulates a market equilibrium in which each item has a price and all agents spend their

entire budget on items that maximize their utility-to-price ratio (Foley 1967, Varian 1974). In the

wagering context, this is equivalent to the parimutuel consensus mechanism of Eisenberg and Gale

(1959).

In the fair division setting, CEEI is envy-free, proportional, and Pareto optimal, but not incentive

compatible. In the wagering setting, the parimutuel consensus mechanism is individually rational

and strictly budget balanced, but of course still not incentive compatible.

No-Arbitrage Wagering Mechanisms (NAWMs).

No-Arbitrage Wagering Mechanisms (Chen et al. 2014) are defined as follows. Let R be a (strictly)

proper scoring rule bounded by [0,1], and for every agent i let y−i denote the mean of the reports

of all other agents.22 NAWMs pay every agent i an amount

1

n
+
n− 1

n2
[R(yi, k)−R(y−i, k)].

NAWMs are individually rational, strictly incentive compatible (when defined using a strictly

proper scoring rule), and weakly (but not strictly) budget balanced. It therefore follows from

the correspondence and the results in Section 3 that the corresponding fair division mechanisms

are proportional, strictly incentive compatible, and wasteful (and therefore not Pareto optimal).

Additionally, they are not envy-free, as the following example illustrates.

Example EC.1. Consider the NAWM defined using the quadratic scoring rule. Let n= 3 and

m= 2, and suppose that reports are given by y1 = (0,1), y2 = (0.9,0.1), and y3 = (1,0). Agent 2

receives a 1
3

+ 2
9
(0.99−0.75) = 0.3867 share of item 1, and a 1

3
+ 2

9
(0.19−0.75) = 0.2089 share of item

2. For agent 3, the shares are 1
3

+ 2
9
(1−0.6975) = 0.4006 and 1

3
+ 2

9
(0−0.7975) = 0.1561, respectively.

The utility that agent 2 achieves is therefore 0.9 · 0.3867 + 0.1 · 0.2089 = 0.3689, while agent 3’s

allocation, according to agent 2’s report, achieves utility of 0.9 · 0.4006 + 0.1 · 0.1561 = 0.3761.

Therefore, agent 2 envies agent 3.

22 Different ways to aggregate the reports of the other agents are possible but we do not consider them here. See the
paper of Chen et al. (2014) for details.
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Constrained Serial Dictatorship (CSD).

Constrained Serial Dictatorship (Aziz and Ye 2014) is defined as follows. Imagine fixing a particular

ordering of the agents, allocating, in order, to each agent her most preferred m/n of the remaining

items (allowing partial items to be allocated). The output of CSD is the expected allocation that

would arise by selecting one of these orderings uniformly at random. CSD is known to be weakly

(not strictly) incentive compatible, non-wasteful and proportional, but not envy-free or Pareto

optimal. Moreover, computing the outcome of CSD is #P complete, which renders an exact algo-

rithm infeasible for larger n. (Variants of CSD employ sampling to circumvent the computational

complexity issue but they no longer guarantee proportionality.)

The Double Clinching Auction (DCA).

The Double Clinching Auction (Freeman et al. 2017) is a wagering mechanism that defines

the outcome-dependent payments through an auction, namely the Adaptive Clinching Auc-

tion (Dobzinski et al. 2008). The details are beyond the scope of this paper and we refer the reader

to the original work (Freeman et al. 2017) for additional details. Note that the Double Clinching

Auction is only defined for the case of m= 2 and n≥ 4.

DCA is individually rational, weakly (not strictly) incentive compatible, and weakly (not strictly)

budget balanced. Therefore, the corresponding fair division mechanism is proportional, weakly

incentive compatible, and wasteful (and therefore not Pareto optimal). We additionally show that

DCA is envy-free.

Theorem EC.1. The Double Clinching Auction is envy-free.

Proof Sketch. The Adaptive Clinching Auction, a crucial building block of DCA, is known to

be envy-free, in the sense that no bidder prefers any other bidder’s allocation and payment to her

own (Devanur et al. 2013, Theorem 4.3). Since each security is an outcome-contingent payment

under DCA, this is exactly equivalent to saying that every agent obtains higher expected payment

from the payoffs assigned to her by the mechanism than she would obtain from any other agent’s

payoffs. When translated to the fair division setting, this guarantee gives envy-freeness of DCA.

�

Partial Allocation (PA).

The Partial Allocation mechanism (Cole et al. 2013b, 2022) is designed to approximate CEEI,

providing each agent at least a 1/e fraction of the utility she would receive under CEEI. Each agent

i is allocated some fi ≤ 1 fraction of her market equilibrium allocation, where fi is determined

according to how costly agent i’s presence is to the other agents. See the work of Cole et al.

(2013b, 2022) for further details. PA is known to be weakly (not strictly) incentive compatible and

envy-free. However, it is wasteful (and therefore not Pareto optimal) and not proportional.
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Strong Demand Matching (SDM).

Strong Demand Matching (Cole et al. 2013b, 2022) is also designed to approximate CEEI. Its

approximation factor is particularly good when all items are highly demanded, for instance, when

there are many more agents than items and no item is uniformly disliked. SDM works by computing

minimal prices at which each agent’s complete demand (when she has a single unit of currency

to spend) can be met by a single item. We refer the reader to the work of Cole et al. (2013b,

2022) for further details. SDM is weakly (not strictly) incentive-compatible and envy-free, but

also wasteful (and therefore not Pareto optimal) and not proportional. Moreover, note that SDM

violates normality, as the following example shows.

Example EC.2. Consider an instance defined by y1 = (0.5,0.5) and y2 = (1,0). SDM allocates

all of item 2 to agent 1, and all of item 1 to agent 2. According to θ = (0.6,0.4), agent 1 receives

utility 0.4 and agent 2 receives utility 0.6. Now consider another instance defined by y′
1 = (1,0) and

y2 = (1,0). SDM allocates half of item 1 to agent 1, and the other half of item 1 to agent 2. According

to θ, agent 1 receives utility 0.6/2 = 0.3< 0.4 and agent 2 receives utility 0.6/2 = 0.3< 0.6. Both

agents have had their utility strictly reduced as a result of agent 1 changing her report from y1 to

y′
1, a violation of normality.

Partial Allocation Max (PAmax).

The PAmax mechanism of Cole et al. (2013a)23 is defined for n= 2 agents. On a given instance, it

selects either the uniform allocation or the outcome of the PA mechanism, whichever gives higher

utilitarian welfare. PAmax guarantees a 2
3

approximation to the optimal utilitarian welfare. PAmax

is weakly (not strictly) incentive compatible, envy-free, and proportional, but is wasteful (and

therefore not Pareto optimal).

Proposition EC.1. PAmax is envy-free and proportional. 24

Proof. For n = 2, the original PA mechanism gives both agents the same utility (Cheung

2016, Footnote 6). Denote this common utility by x. If x < 0.5, then PAmax outputs the uniform

allocation. If x ≥ 0.5, then PAmax outputs the PA allocation. In either case, both agents receive

utility at least 0.5 from the PAmax allocation. Therefore, PAmax is proportional.

To see that PAmax is envy-free, note that both PA and the uniform allocation mechanism are

envy-free. Therefore, any mechanism that only returns allocations that are the output of one of

these two mechanisms must also be envy-free. �

23 Cole et al. (2013a) refer to the mechanism simply as the Max mechanism.

24 We thank Vasilis Gkatzelis for pointing this out.
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To see that PAmax is wasteful, note that when y1 = (0.8,0.2) and y2 = (0.3,0.7), PAmax assigns

a 0.7 fraction of item 1 to agent 1 and a 0.8 fraction of item 2 to agent 2.

Note that the extended version of PAmax due to Cheung (2016) takes a carefully crafted weighted

sum of PAmax and two generalizations of the original PA mechanism. In doing so, it achieves an

improved 0.67776 > 2
3

approximation to the optimal utilitarian welfare while sacrificing propor-

tionality.

EC.2. Additional Figures

We here present additional figures for Nash welfare, complementing the results from Section 6.
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Figure EC.1 Nash welfare of different mechanisms with n= 2 agents and m= 2 items for two different biases.

Reports are centered around (0.25,0.75) (left side) and (0.05,0.95) (right side), and the x axis varies the level of

concentration around those centers. On the right side, CEEI (welfare value 100) and PAmax (welfare value 0

everywhere) are left out for presentational reasons and the y axis is scaled differently than in the other plots we

present.
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Figure EC.2 Nash welfare of different mechanisms with m= 2 items with uniform reports (left side) and biased

reports centered around (0.25,0.75) (right side). The number of agents n varies from 2 to 50 (x axis).
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Figure EC.3 Nash welfare of different mechanisms with n= 10 agents for uniform reports varying m from 2 to

40 (left side) and biased report with m= 20 varying concentration (right side).
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