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Abstract

We draw a surprising and direct mathematical equiva-
lence between the class of allocation mechanisms for di-
visible goods studied in the context of fair division and
the class of weakly budget-balanced wagering mecha-
nisms designed for eliciting probabilities. The equiva-
lence rests on the intuition that wagering is an alloca-
tion of financial securities among bettors, with a bettor’s
value for each security proportional to her belief about
the likelihood of a future event. The equivalence leads
to theoretical advances and new practical approaches for
both fair division and wagering. Known wagering mech-
anisms based on proper scoring rules yield fair alloca-
tion mechanisms with desirable properties, including the
first strictly incentive compatible fair-division mecha-
nism. At the same time, allocation mechanisms make for
novel wagering rules, including one that requires only
ordinal uncertainty judgments and one that outperforms
existing rules in a range of simulations.

1 Introduction

Consider the following two scenarios. In the first, an
information-seeking principal would like to elicit cred-
ible probabilistic forecasts from a group of agents. She
does so by collecting wagers from the agents along
with their predictions, and redistributing these wagers
in such a way that agents with more accurate predic-
tions are more highly rewarded, potentially keeping a
cut for herself. In the second, a neutral mediator needs
to allocate a set of divisible goods or resources, such as
plots of land or compute cycles, to a group of agents
who all have different preferences over the goods and
potentially different entitlements. His top priority is en-
suring that each agent walks away with her fair share.

On the surface, these scenarios appear quite distinct.
Central to wagering is the idea of money changing
hands, with each agent’s rewards contingent on an un-
certain future state of the world. In contrast, the fair di-
vision of goods or resources typically involves no ex-
change of money and no inherent uncertainty.
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Despite these apparent differences, we show that
these scenarios are two sides of the same coin. In partic-
ular, we show that there is a one-to-one correspondence
between the class of weakly budget-balanced wagering
mechanisms—those for which the principal is guaran-
teed no loss—and the class of allocation mechanisms
for divisible goods under additive valuations. Further-
more, we show that commonly studied properties of wa-
gering mechanisms correspond precisely to commonly
studied properties of fair division. Individual rational-
ity, which ensures that risk-neutral agents benefit in ex-
pectation from participation in a wagering mechanism,
corresponds to the notion of proportionality in fair divi-
sion, which, loosely speaking, guarantees each agent at
least a minimal share of allocated goods. And properties
common to the literature in both settings, including in-
centive compatibility and Pareto optimality, carry over
immediately, with minor caveats.

This correspondence has implications for both fair di-
vision and wagering. For example, weighted score wa-
gering mechanisms (Lambert et al. 2008; 2015), which
build on the machinery of proper scoring rules (Gneit-
ing and Raftery 2007), can be imported into the
fair division setting to yield allocation mechanisms
that are proportional, envy-free, and strictly incentive
compatible—to the best of our knowledge, the first
strictly incentive compatible allocation mechanisms.
On the flip side, the strong demand matching allocation
mechanism (Cole, Gkatzelis, and Goel 2013) can be im-
ported into the wagering setting to produce a mecha-
nism that, in our simulations, outperforms standard wa-
gering mechanisms in terms of amount of trade facil-
itated and agent utility. As another example, since the
constrained serial dictatorship (Aziz and Ye 2014) al-
location mechanism requires only ordinal agent pref-
erences, the correspondence yields the first wagering
mechanism that allows agents to report ordinal beliefs.

The correspondence we show builds on an earlier ob-
servation that the output of a wagering mechanism can
be interpreted as a sale of Arrow-Debreu securities to
bettors (Freeman, Pennock, and Vaughan 2017). Once



all wagers have been collected, a wagering mechanism
can be viewed as allocating a fixed number of securi-
ties of different types among the bettors (possibly with
some leftover for the principal), with a bettor’s value for
each security proportional to her belief about the like-
lihood of a future event. Under this interpretation, it is
natural to consider the use of an allocation mechanism
to allocate the securities. Perhaps more surprisingly, our
correspondence shows that the class of weakly budget-
balanced wagering mechanisms is general enough to
capture the entire space of allocation mechanisms for
divisible goods under additive valuations, so any wa-
gering mechanism can be used for allocation of general
goods with no exchange of money.

2 Preliminaries and Background

To set the stage for our main results, we begin with a
review of the formal models of both fair division and
wagering, and define the properties most commonly
sought out in allocation and wagering mechanisms.

Throughout the paper, we use the notation [n] to de-
note the set {1,...,n} and the notation x_; to denote
all components of the vector x except the ith.

2.1 Fair Division

The study of fair division dates back to the 1940s (Stein-
haus 1948) and many variants of the problem have been
examined. In this paper, we focus on the problem of al-
locating divisible goods to agents with additive values,
a special case of the cake-cutting problem (Robertson
and Webb 1998; Procaccia 2013).

Formally, consider a set of n agents indexed
{1,...,n} and a set of m divisible goods indexed
{1,...,m}. Each agent i has a private set of values
v;; > 0 for each good j. As is standard in the cake-
cutting literature, we assume that values are normal-
ized so that 37", v;; = 1. Let z denote a bundle
of goods, with each component z; € [0, 1] specifying
a fractional piece of good j. Agent ¢’s value for z is
then v;(z) = ZT:l v;, ;2. Each agent also has a fixed
weight e; > 0, capturing the agent’s entitlement or pri-
ority. Let E = """, e;.

An allocation consists of a bundle of goods a; as-
signed to each agent ¢. It is permitted to allocate goods
incompletely, resulting in waste. A feasible allocation
is therefore any allocation for which Y7 a; ; < 1 for
all j, and a; ; > O for all 7 and j. An allocation mecha-
nism A takes as input a vector of reported values V; and
weights e; for each agent ¢ and outputs a feasible allo-
cation. We use A; ;(¥V, e) to denote the fraction of good
j allocated to agent i by the allocation mechanism A
with input ¥ and e, and A;(¥, ) for ¢’s full allocation.

We note that some of the allocation mechanisms we
discuss are either ill-defined or lose some of their fair-
ness properties when weights are unequal. As long as

weights are rational, these mechanisms can be extended
to the weighted setting by creating multiple copies of
each agent ¢ such that the number of copies of ¢ is
proportional to e; without sacrificing any of the prop-
erties described below (Brams and Taylor 1996, page
152). However, this method can result in an exponen-
tial increase in time and space requirements, making
some unweighted mechanisms infeasible to run in the
weighted setting.

Several notions of fairness have been proposed in the
fair division literature. Proportionality (Steinhaus 1948)
requires that each agent get an e; /E share of her total
(reported) value for the set of all goods.

Definition 1. An allocation mechanism A is propor-
tional if, for all v and e, and for all ¢ € [n],

Envy-freeness (Foley 1967) requires that no agent
can ever prefer another agent’s allocation to her own,
after accounting for differences in weights.

Definition 2. An allocation mechanism A is envy-
free if, for all ¥ and e, and for all 7,7 € [n],
(1/e:)0i(Ai(V,e)) > (1/eir)i(Air (¥, e)).

Note that a trivial envy-free and proportional alloca-
tion always exists; simply allocate each agent i an e;/ E
fraction of each good.

Pareto optimality is a basic notion of economic effi-
ciency. It says that a mechanism should not output al-
locations for which it is possible to make some agent
better off without making any other agent worse off.

Definition 3. An allocation mechanism A is Pareto op-
timal if for all v and e, and all alternative allocations
{a},...,al},ifo;(al) > 0;(A;(¥V,e)) for some 7, there
exists a j with 9;(a}) < 9;(A;(V,e)).

Finally, we might desire mechanisms that do not in-
centivize agents to misreport their (private) values.

Definition 4. An allocation mechanism A is weakly in-
centive compatible if, for every agent ¢ with values v,
and all reports ¥ and weights e, v;(A;((v;,V_;),€)) >
v;(Ai(V,e)). A is strictly incentive compatible if this
inequality is strict whenever v; # V.

In fair division, fairness is typically emphasized over
incentive compatibility, and weak incentive compatibil-
ity (or equivalently, dominant strategy truthfulness) is
often considered sufficient (e.g., Cole, Gkatzelis, and
Goel 2013).

2.2 Wagering

While the study of wagering mechanisms also has a
long history (Eisenberg and Gale 1959), the model we
study here was formalized by Lambert et al. (2008),
building on ideas from Kilgour and Gerchak (2004).
Consider a random variable X that takes a value in
{1,...,m}. There is a set of n agents (or bettors) in-
dexed {1,...,n}. Each agent ¢ has private, subjective,



immutable beliefs p;, where p; ; is the probability ¢ as-
signs to the event X = 7, and a budget or wager w; > 0,
the maximum amount of money ¢ is prepared to lose.

A wagering mechanism 11 is used to elicit beliefs
from the agents. Each agent reports beliefs p; along
with her wager w;. The wagering mechanism defines
a net payoff II;(p, w, z) to each agent that depends on
the full set of agent reports p, the vector w of agent
wagers, and x, the observed value of X. To be a valid
wagering mechanism, it must be the case that no agent
loses more than her wager (i.e., IL;(p, w, z) > —w; for
all p, w,and z). Let W = Y7 w;.

In prior work, we observed that the output of a wa-
gering mechanism can be interpreted as an allocation
of securities with payoffs that depend on the realization
of X (Freeman, Pennock, and Vaughan 2017). For any
j € [m], we define a type-j security to be a contract that
pays off $1 in the event that X = j and $0 otherwise.
If ¢ is risk neutral, she should be willing to buy a type-j
security at any price up to p; ;.

To define the output of a wagering mechanism in
terms of securities, we can think of each agent ¢ pay-
ing a price of w; up front in exchange for b; ; securities
of each type j, where b; ; = w; + IL;(p,w,j) > 0.
In the event that X = j, agent ¢ receives net payoff
b; ; —w; = IL;(p, w, j). Therefore, the output of a wa-
gering mechanism can be completely specified by an
allocation of securities to agents. We take this interpre-
tation of wagering mechanisms throughout the remain-
der of the paper. To emphasize the distinction, we talk
about wagering mechanisms B, letting B; ;(p, w) de-
note the number of type-j securities allocated to agent ¢
by the mechanism B on input p and w.

We note that this interpretation differs slightly from
the one used in Freeman, Pennock, and Vaughan (2017),
in which complete sets of securities were transformed
into cash and bettors’ payments were explicitly calcu-
lated. The two interpretations are mathematically equiv-
alent, but the one used here makes the correspondence
with fair division more direct by removing any need to
reason about payments.

Lambert et al. (2008) introduced a set of properties
desirable for wagering mechanisms, which we translate
into our security-based notation here. Individual ratio-
nality says that, under the assumption that agents are
risk neutral and have immutable beliefs, agents don’t
lose money in expectation and therefore would will-
ingly participate in the mechanism.

Definition 5. A wagering mechanism B is individ-
ually rational if, for any agent ¢ with beliefs p;,
there exists a report P; such that for all p_; and w,
St pi B (B w) > wi.

Strict budget balance guarantees that the principal
never makes or loses money. Weak budget balance al-
lows the principal to profit, but never record a loss.

Definition 6. A wagering mechanism B is weakly bud-
get balanced if, for all p and w, and for all j € [m],
S Bij(P,w) < W. A wagering mechanism is
strictly budget balanced if the inequality holds with
equality for every j € [m].

Incentive compatibility says that agents should have
incentive to truthfully report their beliefs.

Definition 7. A wagering mechanism B is weakly
incentive compatible if, for every agent ¢ with
beliefs p;, and all reports p and wagers w,
> i piBi (P b-i), W) > D0 pi B (B, W),
A wagering mechanism is strictly incentive compatible
if the inequality is strict whenever p; # ;.

Efficiency is also a concern for wagering mecha-
nisms. A specific notion of Pareto optimality, which we
term side-bet Pareto optimality to distinguish it from the
corresponding fair division notion, was defined in Free-
man, Pennock, and Vaughan (2017). It says that the wa-
gering mechanism should facilitate all available trade.
To formally define this, we first need the notion of a
profitable side bet.

Definition 8. Given reports p and allocations b; ; of
type-j securities to each agent i, we say that Ab is a
profitable side bet if the following conditions hold:

1. Forall j € [m], 1, Ab; ; = 0.
2. Foralli € [n], minjepmy(bi,; + Ab; ;) > 0.

3. For all i € [n], Z;n:lﬁi,jAbm > (, with strict in-
equality for at least one 1.

Definition 9. A wagering mechanism B is side-bet
Pareto optimal if, for all reports p and wagers w, the
allocation B(p, w) does not permit a profitable side bet.

Finally, we note that envy-freeness has been de-
fined in the context of wagering (Freeman and Pennock
2018), but in such a way that an agent ¢ by definition
cannot envy another agent j if j’s maximum loss is
greater than ¢’s wager. While this definition makes sense
for wagering, it does not lend itself to a natural interpre-
tation for allocation.

3 The Correspondence

In this section, we show that there is a one-to-one cor-
respondence between weakly budget-balanced wager-
ing mechanisms and allocation mechanisms for divisi-
ble goods. This correspondence builds on the intuition
that the output of a wagering mechanism is a division
of m “goods” among the agents, where each good rep-
resents a security that pays off W = >""" | w; if a par-
ticular outcome occurs. A bettor’s value for the type-j
security is proportional to her estimate of the probabil-
ity that event j will occur, and wagers can be viewed as
analogs of the priority weights used for allocations.



Definition 10 (Corresponding mechanisms). We say
that an allocation mechanism .4 and wagering mecha-
nism B are corresponding mechanisms if for all p, w,
i € [n],and j € [m],

B; (P, w) = WA, ;(B,w),
or equivalently, if for all ¥, e, ¢ € [n], and j € [m],
BiJ (‘77 e)
—

If A is a valid allocation mechanism, then its corre-
sponding wagering mechanism satisfies 5; ; (p, w) > 0
and for all p, w, and j € [m],

-Ai,j (\7, e) =

n

> Bij(B.w) =Y WA (p.w) < W,
i=1

i=1
It is therefore a well-defined, weakly budget-balanced
wagering mechanism.

Similarly, if B is a valid weakly budget-balanced wa-
gering mechanism, then the corresponding allocation
mechanism is valid since it satisfies A; ;(¥,e) > 0 and
forall ¥, e, and j € [m],

- - Bi i {’76
Sy (we) =y Bualveel oy

i=1 i=1

This correspondence highlights the parallels between
properties traditionally studied in the context of wager-
ing and properties more often studied in the context of
fair division, as we explore next.

3.1 Corresponding Properties

We first show an equivalence between incentive com-
patibility in both settings. A misreport that produces a
more preferred allocation of goods also produces a more
preferred allocation of securities. All omitted proofs are
included in the full version of the paper.!

Theorem 1. A random assignment mechanism A is
(weakly, strictly) incentive compatible if and only if
the corresponding wagering mechanism B is (weakly,
strictly) incentive compatible.

We next show an equivalence between individual
rationality and proportionality. Though it is not typ-
ically described this way, the equivalence highlights
that individual rationality can be viewed as guaran-
teeing an agent her “fair share” of the collected wa-
gers. The restriction to incentive compatible mecha-
nisms stems from a minor difference between the most
common variants of the definitions in the two settings:
proportionality is defined with respect to reported val-
ues, whereas individual rationality is defined with re-
spect to true (not reported) beliefs.

"The full version is available on the authors’ websites.

Theorem 2. A (weakly) incentive compatible random
assignment mechanism A is proportional if and only
if the corresponding (weakly) incentive compatible wa-
gering mechanism B is individually rational.

Pareto optimality in the wagering setting—what we
term side-bet Pareto optimality—does not always im-
ply Pareto optimality in the fair division setting. This
is because side-bet Pareto optimality does not require
the principal to allocate the maximum number of secu-
rities possible. The principal may instead keep a profit
for himself. In the fair division setting, this maps to a
wasteful allocation that leaves some (fractional) goods
unallocated, which is not permitted under Pareto opti-
mality. To obtain the same guarantee in the wagering
setting, we must require the mechanism to be strictly
budget-balanced, precluding any profit for the principal.

Theorem 3. A random assignment mechanism A is
Pareto optimal if and only if the corresponding wager-
ing mechanism B is both side-bet Pareto optimal and
strictly budget balanced.

4 A Comparison of Mechanisms

The correspondence described in the previous section
implies that any wagering mechanism can be viewed
as an allocation mechanism and vice versa. In this
section, we explore several immediate implications of
this equivalence. In particular, we describe a variety of
mechanisms that have been proposed in each setting and
examine their potential in the other. Table 1 summarizes
the properties of these mechanisms.

We start by pointing out a pair of equivalent mecha-
nisms that have been explored in both settings.

Market Equilibrium (ME). In the context of alloca-
tion, the market equilibrium solution endows each agent
i with e; units of currency and simulates a competi-
tive equilibrium in which each good has a price and all
agents spend their entire budget on goods that maximize
their utility:price ratio (Walras 2013). In the wagering
context, this is equivalent to the parimutuel consensus
mechanism of Eisenberg and Gale (1959).

In the allocation setting, the market equilibrium solu-
tion is envy-free, proportional, and Pareto optimal, but
not incentive compatible. In the wagering setting, the
parimutuel consensus mechanism is individually ratio-
nal, strictly budget balanced, and side-bet Pareto opti-
mal, but of course still fails to be incentive compatible.

4.1 Wagering Mechanisms
We next explore the implications of exporting existing
wagering mechanisms into the fair division setting.

Weighted Score Wagering Mechanisms (WSWM).
The class of weighted score wagering mecha-
nisms (Lambert et al. 2008; 2015), are built on proper



Allocation Both Wagering
Envy-Free Pareto Proportional/ Incentive General | General| Budget Side-bet
Optimal | Ind. Rational | Compatible m e/w Balanced | Pareto Opt.

ME Yes Yes Yes No Yes Yes Strict Yes
WSWM Yes No Yes Strict Yes Yes Strict No
NAWM No No Yes Strict Yes Yes Weak No
DCA Eq. weights No Yes Weak No Yes Weak No
CSD No No Yes Weak Yes No Strict No
PA Eq. weights No No Weak Yes Yes Weak Yes
SDM Yes No No Weak Yes No Weak Yes

Table 1: Comparison of properties satisfied by market equilibrium (ME), weighted score wagering mechanisms
(WSWM), no-arbitrage wagering mechanisms (NAWM), the double clinching auction (DCA), constrained serial dic-
tatorship (CSD), partial allocation (PA), and strong demand matching (SDM).

scoring rules, payment functions that elicit truthful pre-
dictions from individual agents (Savage 1971; Gneiting
and Raftery 2007). A scoring rule s maps a prediction
p € [0,1]™ and an outcome j € [m] to a score in
R U {—o0}. We say s is proper if for all p, q € [0,1]™,
Z;'n:l pjs(p,Jj) = Z;nﬂ pjs(q, j), and strictly proper
if this inequality is strict for p # q.

Fixing any strictly proper scoring rule s bounded
in [0, 1], the net payoff of a weighted score wagering
mechanism is defined as

IL(p, w. j) = w (s<ﬁi,j> -

Z?’:l S(f)i’,j)wi’
W .

Weighted score wagering mechanisms are individually
rational, strictly incentive compatible, and strictly bud-
get balanced, but not side-bet Pareto optimal.

Theorem 4. An allocation mechanism corresponding
to a weighted score wagering mechanism is propor-
tional, strictly incentive compatible, and envy-free, but
not Pareto optimal.

Proportionality, strict incentive compatibility, and the
absence of Pareto optimality follow from the correspon-
dence. Envy-freeness holds because each agent’s ex-
pected utility is an affine transformation of her expected
score according to s (and each agent’s score undergoes
the same transformation). By properness of s, every
agent believes her own score to be highest in expecta-
tion, so does not envy any other agent’s allocation.

To our knowledge, allocation mechanisms in this
class are the first strictly incentive compatible allocation
mechanisms, and the first non-trivial allocation mecha-
nisms that are proportional, incentive compatible, and
envy-free.

No-Arbitrage Wagering Mechanisms (NAWM).
No-arbitrage wagering mechanisms (Chen et al.
2014) are defined as follows. Let s be a strictly
proper scoring rule bounded in [0,1], and let
p o [0,1]™>(=D »x R*=1 5 [0,1]™ be a func-
tion that maps reports and wagers of n — 1 agents

to an “average” prediction. A no-arbitrage wagering

mechanism defines net payoffs

w; W_i
w

For certain choices of p, such mechanisms are weakly

budget balanced, individually rational, and strictly in-
centive compatible, but not side-bet Pareto optimal.

(P, w, j) = [s(Pi,7) — s(P(P-1,W_1),7)]-

Theorem 5. An allocation mechanism corresponding
to a no-arbitrage wagering mechanism is proportional
and strictly incentive compatible, but not envy-free or
Pareto optimal.

Again, proportionality, incentive compatibility, and
lack of Pareto optimality follow immediately from the
properties of the corresponding wagering mechanism.
In the full version, we present an example of an instance
on which envy-freeness is violated.

The Double Clinching Auction (DCA). The dou-
ble clinching auction (Freeman, Pennock, and Vaughan
2017) carefully selects a number of securities to allo-
cate and then allocates them via an adaptive clinching
auction (Dobzinski, Lavi, and Nisan 2008). We refer
the reader to Freeman, Pennock, and Vaughan (2017)
for additional details, but note that the double clinching
auction is only defined for the case of m = 2.

The double clinching auction is individually rational,
weakly budget balanced, and weakly incentive compat-
ible, but not side-bet Pareto optimal.

Theorem 6. The allocation mechanism correspond-
ing to the double clinching auction is proportional and
weakly incentive compatible, but not envy-free or Pareto
optimal.

In the full version, we present an example on which
the double clinching auction violates envy-freeness.

4.2 Allocation Mechanisms

We next consider exporting existing allocation mecha-
nisms into the wagering setting.




Constrained Serial Dictatorship (CSD). Con-
strained serial dictatorship (Aziz and Ye 2014) is
defined only for equal weights (e; = 1 for all ¢). Imag-
ine fixing a particular ordering of the agents, allocating
to each agent in order her most preferred m/n of the
remaining goods (allowing partial goods to be chosen).
The output of constrained serial dictatorship is the
expected allocation that would arise from this process
from an ordering chosen uniformly at random.
Constrained serial dictatorship is weakly incentive
compatible and proportional, but not envy-free or Pareto
optimal. There is no known natural extension for un-
equal weights, so agent duplication must be employed.

Theorem 7. The wagering mechanism corresponding
to constrained serial dictatorship is strictly budget bal-
anced, individually rational, and weakly incentive com-
patible. It is not side-bet Pareto optimal.

Strict budget balance holds because the allocation
mechanism always allocates goods completely.

Interestingly, the constrained serial dictatorship al-
location depends only on ordinal, not cardinal, prefer-
ences. Thus it yields a wagering mechanism that can
be used for agents who report only ordinal beliefs (out-
come j is more likely than outcome ;).

Computing the constrained serial dictatorship allo-
cation is #P-complete (Aziz, Brandt, and Brill 2013;
Aziz et al. 2015), but a standard Chernoff and union
bound argument shows that an arbitrary additive ap-
proximation can be found via sampling. We adopt this
approach in our simulations.

Partial Allocation (PA). The partial allocation mech-
anism (Cole, Gkatzelis, and Goel 2013) is designed to
approximate market equilibrium, providing each agent
at least a 1/e fraction of the utility she would receive
in the market equilibrium allocation. Each agent i is
allocated some f; < 1 fraction of her market equilib-
rium allocation, where f; is determined according to
how costly agent 7’s presence is to the other agents. See
Cole, Gkatzelis, and Goel (2013) for further details.
Partial allocation is known to be weakly incentive
compatible and envy-free when the weights of all agents
are equal. However, it is not envy-free when weights are
unequal, and it is not proportional or Pareto optimal.

Theorem 8. The wagering mechanism corresponding
to the partial allocation mechanism is weakly incen-
tive compatible, weakly budget balanced, and side-bet
Pareto optimal. It is not individually rational.

Strong Demand Matching (SDM). Strong demand
matching (Cole, Gkatzelis, and Goel 2013) is also de-
signed to approximate market equilibrium. Its approx-
imation factor is particularly good when all items are
highly demanded, for instance, when there are many
more agents than goods and no good is uniformly dis-
liked. It works by computing minimal prices at which

each agent’s complete demand (when she has a sin-
gle unit of currency to spend) can be met by a single
good. Again, we refer the reader to Cole, Gkatzelis, and
Goel (2013) for further details.

Strong demand matching is envy-free and weakly
incentive-compatible, but not proportional or Pareto op-
timal. There is no known, natural way to extend the
mechanism to unequal weights that retains the desirable
properties, other than the agent-duplication method.

Theorem 9. The wagering mechanism corresponding
to strong demand matching is weakly budget balanced,
weakly incentive compatible, and side-bet Pareto opti-
mal. It is not individually rational.

5 Simulations

We next compare the performance of these mechanisms
in practice. Our test data comes from a binary outcome
(m = 2) wagering setting, but the equivalence allows
us to make observations about allocation-specific prop-
erties like envy-freeness too. In the full version of the
paper, we additionally report results from simulations
with larger outcome spaces using synthetic data. We re-
strict attention to incentive compatible mechanisms, ex-
cluding market equilibrium.

We use reports gathered from an online predic-
tion contest called ProbabilitySports (Galebach 2017).
The dataset consists of probabilistic predictions about
the outcomes of 1643 U.S. National Football League
matches between 2000 and 2004. For each match, be-
tween 64 and 1574 people reported their subjective
probability of the home team winning the game and
earned points according to a Brier scoring rule.

ProbabilitySports participants did not submit wagers.
For our simulations, we follow previous work (Free-
man, Pennock, and Vaughan 2017) and generate wagers
in two ways. First, we consider uniform wagers, model-
ing the scenario in which agents are required to risk the
same amount. Second, for smaller instances on which
it is tractable to employ the agent duplication method
for unequal weights, we generate wagers according to a
Pareto distribution with shape parameter 1.16 and scale
parameter 1. Since agent duplication requires rational
wagers, we scale the generated wagers to lie in [0, 50],
and then take the ceiling of each, yielding integral wa-
gers between 1 and 50.

Table 2 summarizes the results of our first simula-
tion, in which the mechanisms were run on the com-
plete ProbabilitySports dataset with uniform wagers.
Weighted score and no-arbitrage wagering mechanisms
utilized the Brier score (Brier 1950). We report four
statistics, all averaged over the 1643 matches consid-
ered. Value ratio is the sum over all agents of the ex-
pected value of their allocated securities (with respect
to their own subjective beliefs) normalized by the to-
tal amount wagered, or > Y1, >0, pi ;1 Bi (D, ).



. Fraction of
Value Ratio Securities Allocated

WSWM 1.092 1.000
NAWM 1.046 0.954
DCA 1.326 0.997
CSD 1.168 1.000
PA 0.490 0.369
SDM 1.329 0.999

Fraction of Agents Value Ratio for Agents with
with an IR Violation an IR Violation

0 n/a
0 n/a
0 n/a

0.004 0.997

0.995 0.487

0.042 0.999

Table 2: Comparison of mechanisms on the full ProbabilitySports dataset with uniform wagers.
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Figure 1: Value ratio (left), fraction of instances with envy (center), and average maximum envy across all instances
with envy (right) on a subsample of the ProbabilitySports data with Pareto distribution wagers.

In the allocation setting, the value ratio is simply the
(normalized) social welfare, a natural measure of effi-
ciency. In the wagering setting, a high value ratio can
be seen as encouraging participation, since forecasters
will be more likely to participate when they expect to
make a higher profit. High participation is crucial to har-
nessing the wisdom-of-crowds principle and construct-
ing a good aggregate forecast. Fraction of securities al-
located is the quantity 1 > ) 37" | B, (P, w). In
the allocation setting, this is a measure of waste, with
lower values implying higher waste, while in the wa-
gering setting any “wasted” securities become mech-
anism profit when the corresponding outcome occurs.
Fraction of agents with an IR violation is the fraction
of agents for whom the expected value of their security
allocation is less than the value of their wager. The final
column is similar to value ratio, but calculated only over
agents with an individual rationality violation, giving a
sense of the magnitude of the violations.

Judging by these metrics, the double clinching auc-
tion (DCA) and strong demand matching (SDM) show
the strongest performance, with comparably high value
ratios, negligible waste, and negligible violations of in-
dividual rationality (none in the case of DCA). De-
spite their strong theoretical guarantees but in line
with previous observations (Freeman, Pennock, and
Vaughan 2017), weighted score (WSWM) and no-
arbitrage (NAWM) wagering do not facilitate much
trade, creating little value for the agents. At the other

end of the spectrum, partial allocation (PA) suffers poor
performance across the board, violating individual ra-
tionality for almost all agents, and often substantially
so. We note that the small number of individual ratio-
nality violations observed for constrained serial dicta-
torship (CSD) stem from the fact that CSD allocations
can only be computed approximately.

To understand how performance scales with the size
of the instance, we next subsampled n agent reports and
generated wagers for each n € {5,10,...,50}. Fig-
ure 1 shows a selection of the results for agents with
Pareto distribution wagers. More are included in the full
version of the paper. Results for uniform wagers were
similar, though the double clinching auction and partial
allocation exhibit no envy in those cases.

We see similar trends in value ratios (left plot), but
with strong demand matching exhibiting a clear advan-
tage over the double clinching auction. The center plot
shows the fraction of instances for which at least one
agent envies another, limited to those mechanisms that
are not guaranteed to be envy-free. In all cases, envy
almost always exists. For a pair of agents (4, j), define
the envy ratio as the expected utility that : would re-
ceive if she were allocated j’s securities, divided by the
expected utility she receives from her own allocation,
and scaled to adjust for wagers. The right plot shows
the maximum envy ratio on instances for which at least
one agent envies another. We see that partial allocation
often leads to significant amounts of envy.



6 Discussion

While we have focused on the positive implications
of the equivalence between wagering and fair division
mechanisms, we note that it immediately implies new
impossibility results as well. For instance, a classical re-
sult of Schummer (1996) in the allocation setting says
that the only incentive compatible and Pareto optimal
mechanisms are dictatorial. This result carries over to
the wagering setting, and complements the impossibil-
ity result of Freeman, Pennock, and Vaughan (2017)
that no weakly budget-balanced wagering mechanism
can simultaneously satisfy incentive compatibility, side-
bet Pareto optimality, and individual rationality. As an-
other example, Han et al. (2011) showed that, for large
enough n, no incentive compatible allocation mecha-
nism can achieve better than a 1/m approximation to
the optimal social welfare. This result also carries over
to wagering.

Despite the equivalence, we expect there to be con-
tinued value in studying the two problems in isolation.
Different design criteria have traditionally been empha-
sized for the two—most notably, strict incentive com-
patibility (drawing heavily on the scoring rule literature)
for wagering and envy-freeness for fair division—and
different mechanisms may be more appropriate in one
setting than the other. However, the connection we re-
vealed opens up the possibility of applying any new re-
sults developed in one setting to the other, an approach
we expect to be fruitful as both fields develop.
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