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ABSTRACT
In (computational) social choice, how ties are broken can
affect the axiomatic and computational properties of a vot-
ing rule. In this paper, we first consider settings where we
may have multiple winners. We formalize the notion of par-
allel universes tiebreaking with respect to a particular tree
that represents the computation of the winners, and show
that the specific tree used does not matter if certain con-
ditions hold. We then move on to settings where a single
winner must be returned, generally by randomized tiebreak-
ing, and examine some drawbacks of existing approaches.
We propose a new class of tiebreaking schemes based on
randomly perturbing the vote profile. Finally, we show that
one member of this class uniquely satisfies a number of de-
sirable properties.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems; J.4 [Computer Applications]: Social and Be-
havioral Sciences - Economics
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1. INTRODUCTION
The theory of voting has attracted the interest of mul-

tiagent systems researchers because it provides a natural
framework for a group of agents with distinct preferences to
reach a joint decision. In this theory, each agent (or voter)
submits a ranking of the available alternatives, and a voting
rule determines which alternative wins. Many voting rules
have been proposed, and which one is most appropriate gen-
erally depends on the setting at hand.

Voting rules are often specified in a way that allows for
ties to occur, without making it clear how these ties are to
be broken. For example, under the plurality rule, multiple
alternatives may have the highest score. As a somewhat
different type of example, under the STV rule, where in each
round we eliminate the alternative with the lowest plurality
score, ties may occur within a round.
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Various reasons may be offered for why it is unnecessary to
specify a tiebreaking procedure. One is that a tie is unlikely
to occur anyway [17, 14, 12, 15]. This is not always a satis-
factory excuse. For one, if an election has few voters, then a
tie is generally quite likely—and the importance of an elec-
tion is not always proportional to the number of voters in it.
Another issue is that strategic voters will base their decision
of how to vote purely on scenarios in which they are pivotal
(a voter is pivotal if changing her vote can change the out-
come). Thus, even if such scenarios are unlikely, how they
are handled nevertheless completely determines how strate-
gic voters vote. In computational social choice, we see this
issue reflected in the fact that how ties are handled affects
the complexity of manipulation [22, 21, 23, 2].

Another reason that may be offered for not specifying the
tiebreaking procedure is that one can anyway easily specify a
“natural” tiebreaking procedure: choosing an alternative at
random, choosing a voter at random who breaks the tie, hav-
ing a fixed tiebreaking order over alternatives, etc. Indeed,
in actual elections, usually a simple tiebreaking procedure is
specified, such as the Vice President breaking the tie.

In this paper, we pursue an approach to tiebreaking that
generalizes across voting rules. The advantages of such an
approach are that ad-hoc decisions are avoided, and that it
liberates researchers from the burden of specifying tiebreak-
ing procedures for each voting rule.

Before discussing procedures to break ties, we consider
the question of which alternatives should be considered tied
in a given election. For multi-stage rules such as STV and
ranked pairs, the answer to this questions depends on how
intermediate ties, i.e., ties occurring during the execution
of the rule, are handled. A common way to handle such
ties is parallel universes tiebreaking (PUT). Informally, an
alternative is a PUT winner if there is some way of breaking
ties in the steps of the protocol that makes this alternative
the winner. We provide a general definition of PUT, which
to our knowledge has previously only been studied on a rule-
by-rule basis, and justify the PUT concept by showing that
selecting PUT winners is the natural way to extend a rule
from non-tied instances to tied ones.

We then move on to actual tiebreaking schemes, i.e., func-
tions that map every tied election to a probability distribu-
tion over the set of alternatives that are tied. After reviewing
a number of common tiebreaking schemes and their proper-
ties, we propose a class of tiebreaking schemes that is based
on randomly perturbing the input of the election by a small
amount. We conclude the paper by characterizing a partic-
ularly attractive member of this class.



2. PRELIMINARIES
Let A be a finite set of m alternatives and let N be a finite

set of n voters. A ranking of A is a permutation of A. The
set of all rankings of A is denoted by L(A) and contains m!
rankings. The preference of voter v ∈ N is represented by
a ranking r(v) ∈ L(A), and a preference profile R contains
the preferences of all voters in N .

A social choice function (SCF) f associates with every
preference profile R a nonempty set f(R) ⊆ A of alterna-
tives. The following three properties are standard assump-
tions on SCFs that are satisfied by virtually all common
SCFs. First, an SCF is anonymous if the set of chosen al-
ternatives does not change when the voters are permuted.
Second, an SCF is neutral if permuting the alternatives in
the individual rankings also permutes the set of chosen al-
ternatives in the same way. Third, an SCF is homogeneous
if f(R) = f(kR) for all k ∈ N>0. Here, kR is the profile
that contains k copies of each voter in R. The conjunction
of anonymity and neutrality is also referred to as symmetry.

In order to accommodate SCFs that encounter ties dur-
ing their execution (and that are not equipped with a way
of handling these ties), we also define SCFs that are only
defined on a subset of preference profiles. A partially speci-
fied social choice function (p-SCF) f maps every preference
profile R to either a nonempty set f(R) ⊆ A of alternatives,
or to >. If f(R) = >, we say that f is undefined on R. By
definition, every SCF is also a p-SCF.

For a (fully specified) SCF f , a tiebreaking scheme speci-
fies the output of f at profiles R with |f(R)| > 1. Formally,
a tiebreaking scheme for f associates with every preference
profile R a probability distribution (or lottery) t(R) over A
such that t(R)(a) = 0 whenever a /∈ f(R). Here, t(R)(a)
denotes the probability of a under lottery t(R). Neutrality,
anonymity, and symmetry for tiebreaking schemes are de-
fined analogously to the corresponding properties of SCFs.

Finally, we introduce the SCFs and p-SCFs that we use
in our examples. A scoring rule is an SCF that is de-
fined by a sequence s = (sk)k≥1, where for each k ∈ N,
sk = (sk1 , . . . , s

k
k) ∈ Rk is a score vector of length k. For

a preference profile R on m alternatives, the score vector
sm is used to allocate points to alternatives: each alter-
native receives a score of smj for each time it is ranked in
position j by a voter. The scoring rule then selects all al-
ternatives with maximal total score. Prominent examples
of scoring rules are plurality (sk = (1, 0, . . . , 0)) and Borda’s
rule (sk = (k − 1, k − 2, . . . , 0)).

Single Transferable Vote (STV) is a p-SCF that works in
several stages. At the first stage, the alternative with the
lowest plurality score is eliminated and removed from all the
votes. This process is repeated, eliminating one alternative
at a time, until a single alternative remains. If at any stage,
a tie for the lowest plurality score occurs, STV outputs >.

For an introduction to other common SCFs, some of which
we will mention throughout this paper, see [4].

3. TIES IN MULTI-STAGE RULES
When a tie occurs in a fully specified SCF like plurality

or Borda’s rule, it is clear which alternatives are tied for
being the winner: the alternatives in f(R). For other rules,
however, this is not so clear. For instance, consider multi-
stage rules like STV or ranked pairs, where ties can occur at
every individual stage. Formally, as already illustrated for

STV, we model such rules as p-SCFs that are only defined
on the subset of preference profiles that never result in a tie
during the execution of the rule. (For these profiles, the p-
SCF always outputs a single alternative.) If a tie occurs at
a stage (two alternatives having the lowest plurality score in
STV, or two pairs of alternatives having the highest majority
margin in ranked pairs), the p-SCF outputs > because there
are multiple ways to deal with this and any subsequent ties.
This motivates us to look at tie-handling procedures, i.e.,
rules that tell us which alternatives are actually to be con-
sidered tied for a certain profile. A tie-handling procedure
extends a p-SCF f to a (fully specified) SCF by associating
a nonempty subset of alternatives with each profile R for
which f(R) = >.1

A natural tie-handling procedure is parallel universes
tiebreaking (PUT)2 [25, 6]. Under PUT, the set f(R) con-
sists of all alternatives that are chosen by f for some way
of breaking any ties that occur along the way (see Section 5
for a formal definition).

Example 1. Consider STV and the 7-voter preference
profile R given by

3 2 2
c a b
b b a
a c c

At the first stage, a and b have the lowest plurality score and
are therefore tied to be eliminated. If a is eliminated, b will
be chosen (since it beats c in the next stage). If b is elim-
inated, a will be chosen. The tie-handling procedure PUT
would therefore yield f(R) = {a, b}.

Other tie-handling procedures are conceivable. For exam-
ple, the following tie-handling procedure is often considered
for STV: whenever there is a tie for the lowest plurality score,
simultaneously eliminate all tied alternatives.3 For this way
of handling ties, c would be the unique STV winner for the
profile in Example 1. Even though this tie-handling pro-
cedure seems reasonable at first glance, it has undesirable
effects. For instance, it violates the intuition that an alter-
native that is chosen by an SCF on a tied profile should be
in some sense ‘close’ to being the winner in a profile without
ties. To illustrate this, consider again the profile in Ex-
ample 1. Now, suppose that we replace each of the voters
with 1000 new voters. The result of the election remains the
same: c is still the unique winner because both a and b are
eliminated at the first stage. But if even one of the voters
changes her most preferred alternative, there are no longer
any ties. Either a or b is uniquely eliminated at the first
stage, and the one which is not eliminated will be selected
because it beats c at the second stage. Therefore, with only
a tiny change to the votes, we move from a profile in which c
is selected to one in which c is eliminated by a large margin!

1The difference between a tie-handling procedure and a
tiebreaking scheme is that the former always outputs a non-
empty set of alternatives (possibly a singleton), whereas the
latter outputs a probability distribution.
2According to our terminology, PUT is not a tiebreaking
scheme; we keep the name for consistency with the existing
literature.
3This is a tie-handling procedure rather than a tiebreaking
scheme because there might be a complete tie in the last
round, in which case all remaining alternatives are in f(R).
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Figure 1: Illustration of a profile space with three separate
regions on which a p-SCF f chooses a unique winner. Lines
represent profiles at which there is a tie.

In the following section, we formally define properties that
prohibit this strange behavior.

4. ANALYTICAL PROPERTIES OF SO-
CIAL CHOICE FUNCTIONS

We now consider a number of properties of SCFs and p-
SCFs that utilize a vector space representation of preference
profiles. This allows us to use techniques from real analysis;
we are certainly not the first to take this approach [30, 28].

4.1 Profiles as Vectors
Since we only consider anonymous SCFs, we can represent

a preference profile R as a vector in Nm!
≥0 as follows. Fix an

enumeration r1, r2, . . . , rm! of L(A) and, for 1 ≤ i ≤ m!, let
Ri be the number of voters v with r(v) = ri. An SCF then
corresponds to a mapping from Nm! to 2A \ ∅ (and a p-SCF
corresponds to a mapping from Nm! to 2A \ ∅ ∪ {>}).

We remark that the domain of a homogeneous SCF or
p-SCF can be easily extended to the space Rm!

≥0, and we

utilize that fact throughout the paper.4 (Of course, for most
common voting rules, it is quite obvious how to extend them
to allow votes with arbitrary real-valued weights.) Let 0 ∈
Rm!
≥0 denote the profile R with Rr = 0 for all r ∈ L(A).

Define the distance d(R,R′) between two preference profiles
R and R′ by d(R,R′) = max1≤i≤m! |Ri −R′i| and the norm
|R| of a profile R by |R| = d(R,0) = max1≤i≤m!Ri.

4.2 Continuity and Non-Singularity
Continuity says that if we have a sequence of profiles on

which f chooses alternative a, then a is chosen by f at the
limit point of that sequence.

Definition 1. An SCF f is continuous at R if for every

sequence (Rk)k∈N with (Rk)
k→∞−−−−→ R and a ∈ f(Rk) for all

k ∈ N, a ∈ f(R). We say f is continuous if it is continuous
at R for all R ∈ Rm!

≥0.

In Figure 1, continuity of f requires that on the tied pro-
files, f chooses at least the alternatives that are chosen in
adjacent regions. For example, on the line separating the
region where f chooses a and the region where f chooses b,
f must choose at least a and b (and possibly more).

Non-singularity requires that if f chooses alternative a at
some profile R, then if we randomly choose a profile R′ that
is ‘close’ to R, f(R′) = a with non-zero probability.
4Every homogeneous SCF can be extended to the domain
Qm!
≥0 in a straightforward manner: for R ∈ Qm!

≥0, choose

k ∈ N such that kR ∈ Nm!
≥0 and define f(R) = f(kR). Ho-

mogeneity of f ensures that the definition of f(R) is inde-
pendent of the factor k. Finally, the gap between Qm!

≥0 and

Rm!
≥0 can be bridged by defining a continuous extension [30].

Definition 2. An SCF f is singular at R if a ∈
f(R) and there exists an ε > 0 such that the set
{R′ : d(R,R′) < ε and a ∈ f(R′)} has (Lebesgue) measure
zero. We say f is non-singular if there is no R ∈ Rm!

≥0 such
that f is singular at R.

In Figure 1, non-singularity of f requires that on the tied
profiles, f chooses at most the alternatives that are chosen
in adjacent regions. For example, on the line separating the
region where f chooses b and the region where f chooses c,
f must not choose a (but f can choose b, c, or both).

We consider continuity and non-singularity very natu-
ral properties; indeed, they are satisfied by almost all
common voting rules. However, STV appended with
the simultaneous-elimination tie-handling procedure from
the previous section violates both continuity and non-
singularity. In order to see that continuity is violated, con-
sider the profile R from Example 1 and observe that it is easy
to find profiles arbitrarily close to R at which a is selected—
but a /∈ f(R). In order to see that non-singularity is vio-
lated, observe that f is singular at R because (1) the only
profiles close to R for which c is chosen are those which have
a and b tied in the first stage; and (2) the set of profiles with
this property is a measure zero subset of the entire space of
profiles. By contrast, STV appended with PUT is continu-
ous and non-singular.

4.3 Essential Resoluteness
For every p-SCF f , we can partition the set Rm!

≥0 of all pro-
files into the set of non-tied profiles NT (f) and the set of
tied profiles T (f) as follows. NT (f) is given by the set of all
profiles for which f is defined and outputs a single alterna-
tive, i.e., NT (f) = {R ∈ Rm!

≥0 : f(R) ⊆ A and |f(R)| = 1}.
Accordingly, the set T (f) = Rm!

≥0 \ NT (f) contains all pro-
files for which f outputs either > or a subset of A that
contains more than one alternative.

A p-SCF is resolute if T (f) is empty (or, equivalently,
NT (f) = Rm!

≥0). No symmetric p-SCF can be resolute (res-
oluteness implies that the p-SCF is defined everywhere, and
symmetry implies that f(0) = A), but many common SCFs
satisfy the weaker notion of essential resoluteness, which re-
quires that almost all profiles are non-tied.

Definition 3. A p-SCF f is essentially resolute if T (f)
has measure zero in Rm!

≥0.

Equivalently, NT (f) has full measure. Examples of essen-
tially resolute rules include all scoring rules, Kemeny’s rule,
ranked pairs, and STV.5 Notable exceptions include tour-
nament solutions such as Copeland and Slater. The reason
for this is that those SCFs depend only on pairwise compar-
isons between alternatives. Therefore, if a given preference
profile R is tied, then so is any other profile that gives rise to
the same pairwise comparisons (which, provided that none
of the pairwise comparisons themselves are tied, will be the
case for any R′ with d(R,R′) < ε for a sufficiently small
ε > 0—a set of profiles with strictly positive measure).

The p-SCF depicted in Figure 1 is essentially resolute,
since ties occur only on the lines, which represent a measure
zero subset of profiles.

5All scoring rules and Kemeny’s rule are also symmetric, ho-
mogeneous, continuous, and non-singular. The same holds
for the p-SCFs ranked pairs and STV when appended with
PUT.
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a c b c
b b a a
c a c b

{a, b, c}

{b, c}

{b} {c}

{a, c}

{a} {c}

{a, b}

{a} {b}

Figure 2: Example of a profile R and a tree T representing
f = STV. Nodes are labelled with the set of alternatives
that have not yet been eliminated at the corresponding state
of computation. Edges of the subtree T (R) are shown in
bold. Thus, PUT f,T (R) = {b} ∪ {c} ∪ {a} ∪ {c} = {a, b, c}.

5. PARALLEL UNIVERSES TIEBREAK-
ING

In this section, we formalize the notion of parallel uni-
verses tiebreaking (PUT) and provide a justification of this
tie-handling procedure using continuity.

5.1 A Formal Definition of PUT
We model the execution of a (multi-stage) p-SCF using a

computational tree. Paths from the root to the leaves cor-
respond to different branches of computation of the p-SCF,
and each leaf is labelled with an alternative that wins at that
leaf. At every non-leaf node x (corresponding to a given
execution state), a preference profile specifies a nonempty
subset of the children as feasible (corresponding to feasible
successor states). A tie occurs if more than one child node is
feasible. PUT winners can be found by following all feasible
paths from the root to the leaves and collecting all labels of
the leaves encountered.

For STV, the children of the root of T could correspond
to states in which one alternative has been eliminated. For
a given profile, the set of feasible children would then be
given by those children corresponding to states in which an
alternative with the lowest plurality score has been elimi-
nated (see Figure 2). We remark that other trees for STV
are conceivable, and that, in general, every p-SCF f can be
modeled as a tree of depth 1 (such that a leaf labelled with
a is feasible for profile R if and only if a ∈ f(R)).

Formally, let T be a tree with root r(T ). Denote the set of
leaf nodes of T by L(T ), and for every non-leaf node x, let
N(x) denote the set of children of x. Let w be the function
which maps every leaf node ` to its label w(`) ∈ A. A pref-
erence profile R maps every non-leaf node x to a nonempty
subset NR(x) ⊆ N(x) of feasible children. Let T (R) be the
minimal subtree of T with the following property: T (R) con-
tains r(T ) and all nodes x such that x ∈ NR(x′) for some
node x′ in T (R). The set w(L(T (R))) corresponds to the
set of PUT winners for profile R.

Given a p-SCF f , we say that a tree T represents f if
f(R) = w(L(T (R))) for all non-tied profiles R ∈ NT (f).
We can now formally define PUT winners for a p-SCF f
with respect to a tree T .

Definition 4. Let T be a tree that represents a p-SCF f .
For a given profile R ∈ Rm!

≥0, the PUT winners of f with
respect to T are defined as the alternatives corresponding to
the leaves of T (R), i.e.,

PUT f,T (R) = w(L(T (R))).

The definition of PUT f,T depends on the choice of the
tree T . We go on to identify conditions (on f and on T )
that allow us to do away with this dependence. The follow-
ing properties of trees are defined analogously to the corre-
sponding properties of SCFs (see Section 4).

Definition 5. Let T be a tree and R a preference profile.

• T is continuous atR if for every sequence (Rk)k∈N with

(Rk)
k→∞−−−−→ R and ` ∈ L(T (Rk)) for all k ∈ N, ` ∈

L(T (R)). We say T is continuous if it is continuous
at R for all R ∈ Rm!

≥0.

• T is singular at R if ` ∈ L(T (R)) and there exists
ε > 0 such that {R′ : d(R,R′) < ε and ` ∈ L(T (R′))}
has measure zero. We say T is non-singular if there is
no R ∈ Rm!

≥0 such that T is singular at R.

Theorem 1. Let f be an essentially resolute p-SCF and
let T1 and T2 be two continuous, non-singular trees that both
represent f . Then,

PUT f,T1(R) = PUT f,T2(R)

for all R ∈ Rm!
≥0.

Proof. Since both T1 and T2 represent f , PUT f,T1(R) =
PUT f,T2(R) for all non-tied profiles. Therefore, consider
a tied profile R ∈ T (f) and let a ∈ PUT f,T1(R) =
w(L(T1(R))). Then there is some leaf ` ∈ L(T1(R)) with
w(`) = a. And since T1 is non-singular, there exists
a sequence of profiles (Ri)i∈N such that (Ri) → R and
l ∈ L(T1(Ri)) for all i. By non-singularity of T1 and the fact
that f is essentially resolute, we can find a sequence of pro-

files (Rk)k∈N on which f is resolute such that (Rk)
k→∞−−−−→ R

and ` ∈ L(T1(Rk)) for all k. Therefore, f(Rk) = {a} for
all k. Since T2 represents f , we have w(L(T2(Rk)) = {a}
for all k. By finiteness of T2, there is a subsequence of
(Rk)k∈N, say (Rkj )j∈N, and m ∈ L(T2) with w(m) = a,
such that m ∈ L(T2(Rkj )) for all j. By continuity of T2,
m ∈ L(T2(R)) and thus a ∈ w(L(T2(R))) = PUT f,T2(R).
Therefore, PUT f,T1(R) ⊆ PUT f,T2(R). The opposite inclu-
sion holds by a symmetric argument.

For an essentially resolute p-SCF f , we simply write
PUT f for PUT f,T , where T is some tree that satisfies the
conditions of Theorem 1. Theorem 1 guarantees that PUT f

is well-defined. Note that the SCF PUT f agrees with f on
all non-tied profiles, and that continuity and non-singularity
of a tree T imply continuity and non-singularity of PUT f,T

(and thus of PUT f ).

5.2 A Justification of PUT
We conclude this section with an axiomatic justification of

PUT. For a given p-SCF f , one can think of the set NT (f)
as the set of profiles where a clear-cut winner exists, whereas
profiles in T (f) give rise to some ambiguity. Given an essen-
tially resolute p-SCF (i.e., a p-SCF for which the set T (f)
has measure zero), a natural approach for reasoning about
potential outcomes for profiles in T (f) is by focusing on
outcomes for profiles in NT (f) and to extrapolate. Assum-
ing that f is continuous and non-singular at all profiles in
NT (f), it turns out that there is a unique way of extend-
ing f to T (f) such that these properties are retained, and
that this extension coincides with PUT f .



Theorem 2. Let f be an essentially resolute p-SCF that
is continuous and non-singular at all R ∈ NT (f). Then,
PUT f is the only SCF that is continuous, non-singular, and
agrees with f on NT (f).

Proof sketch. By definition, PUT f agrees with f on
NT (f). Moreover, PUT f is continuous and non-singular.

Now let f ′ be an SCF that is continuous, non-singular,
and agrees with f on NT (f). Non-singularity of f ′ implies
f ′(R) ⊆ PUT f (R) for all R ∈ Rm!

≥0, and continuity of f ′

implies PUT f (R) ⊆ f ′(R) for all R ∈ Rm!
≥0.

6. EXISTING TIEBREAKING SCHEMES
Whereas the previous sections have been concerned with

the question of which alternatives are tied at certain profiles,
we now focus on methods to break ties. This section briefly
surveys some existing tiebreaking schemes, and prepares the
ground for the tiebreaking schemes that will be introduced
in Section 7.6

6.1 Fixed-Order Tiebreaking
A very common way to break ties works by first fixing a

tiebreaking ordering, either by some external authority or by
copying the preferences of a distinguished voter. Then, this
ordering is used to break any ties that occur, either during
the execution of the SCF, or after computing the set of PUT
winners. These schemes violate neutrality (in the case where
the ordering is externally given) or anonymity (in the case
where the preferences of a given voter are used). Since we
consider symmetry (i.e., the conjunction of neutrality and
anonymity) a basic fairness axiom for tiebreaking schemes,
we do not consider fixed-order tiebreaking schemes any fur-
ther in this paper.

6.2 PUT-Based Tiebreaking
Symmetric variants of fixed-order tiebreaking schemes

can be constructed by randomization. The following two
schemes both rely on the notion of PUT winners (which are
defined independently of the tree under the conditions of
Theorem 1). In PUT random order tiebreaking, a ranking
r ∈ L(A) is selected uniformly at random and the winner is
defined as the highest ranked alternative in r that is among
the PUT winners. This is equivalent to choosing one alter-
native from the set of PUT winners uniformly at random.
PUT random vote tiebreaking works similarly, except that
the ranking r is selected uniformly at random from the set
of all votes that have been cast. Equivalently, each PUT
winner is assigned a probability proportional to the plural-
ity score they would get in an election among only the PUT
winners. In the example in Figure 2, PUT random order
tiebreaking gives the lottery t(R) = 1

3
a+ 1

3
b+ 1

3
c, and PUT

random vote tiebreaking gives t(R) = 1
4
a+ 1

4
b+ 1

2
c.

6.3 Tree-Based Tiebreaking
Multi-stage SCFs that are modeled as trees (see Sec-

tion 5.1) allow for a different approach. Namely, one can

6While most tiebreaking schemes considered in this section
are formulated in terms of multi-stage rules and/or trees,
we remark that all the schemes are also applicable to fully
specified (single-stage) SCFs such as Borda’s rule: for the
schemes in Sections 6.1 and 6.2, f(R) can take over the role
of the set of PUT winners; and the schemes in Section 6.3
can be applied to a trivial (depth 1) tree representation of f .

define tiebreaking schemes by choosing only a single path
from the root to the leaves of the tree. The most obvious
way to do this would be to choose a leaf of T (R) uniformly
at random, and declare the label of that leaf the winner.
Call this method random leaf tiebreaking. Another option
is to find a path by choosing, at each non-leaf node x, a
child node in N(x) uniformly at random among all feasible
children. We call this random child tiebreaking. For the ex-
ample specified in Figure 2, random leaf and random child
tiebreaking both give the lottery t(R) = 1

4
a + 1

4
b + 1

2
c (in

general, these schemes may produce different lotteries).
There are also tree-based schemes that are similar to the

PUT-based schemes described in the previous paragraph,
in that a ranking r is selected (uniformly at random from
either the set of all rankings or the set of all votes) and
used to break any ties that occur in the execution of the
tree.7 Tree-based tiebreaking schemes are highly sensitive
to the structure of the tree T chosen to represent f . For
example, these schemes reduce to their corresponding PUT-
based schemes in the case where f is represented by the
trivial tree of depth 1.

6.4 Discussion
It is straightforward to show that the tiebreaking schemes

considered in this section may yield different results. A ma-
jor drawback of PUT-based tiebreaking schemes is that the
set of PUT winners may be NP-hard to compute. In par-
ticular, this is the case for STV [7], ranked pairs [5], and a
number of other SCFs [18]. Therefore, we cannot efficiently
sample from the probability distributions defined by PUT-
based schemes.

Random child tiebreaking, on the other hand, does not
suffer from this problem, as long as it is easy to follow a
random path down T (R), which tends to be the case for
natural trees. There is also a conceptual advantage of tree-
based schemes. Intuitively, under rules such as STV, on
a tied profile, some alternatives have more routes to vic-
tory than others, and it feels natural that they should have
greater probability of having the tie broken in their favor
(see, e.g., [26]). Tree-based tiebreaking achieves this, in
the sense that an alternative that would win under more
tiebreaking paths (feasible paths in T (R)) has an advan-
tage. The downside is that (unlike PUT) the alternatives’
winning probabilities depend on the precise tree chosen—
and if a trivial (depth 1) tree is chosen, this will obscure
the fact that an alternative has multiple ways to win (and
therefore not take it into account).

Is there a way to get the best of both worlds? In what
follows, we take a different approach that is independent
of the tree: we randomly perturb the original profile and
compute the winner for the perturbed profile. As we will
see, there are many ways in which we can perturb profiles,
with different axiomatic and computational properties.

7Unfortunately, while these schemes are well suited to some
multi-stage rules such as STV, there is no guarantee that
intermediate ties are as simple as ties between alternatives.
For example, in the ranked pairs rule, intermediate ties are
between pairs of alternatives. For this case, ties could be
broken lexicographically (where the lexicographic order is
given by r; see [31]), but in general the intermediate ties
could take any form.



7. RANDOM PERTURBATION TIE-
BREAKING

In this section, we propose the class of random perturba-
tion tiebreaking schemes. The idea is that given a tied pro-
file, we add a small random perturbation to the profile which
will break the tie with high probability. This technique is
inspired by (symbolic) perturbation methods that are used
in algorithm design to handle degenerate input instances,8

but its application to voting is, to our knowledge, new.
To motivate perturbation tiebreaking in the context of

voting, suppose that we know that the preferences of the
voters are going to gradually change over time, but we have
no idea how. Then it makes sense to choose from the set
of tied outcomes in a way that reflects the distribution of
voters’ preferences as they change slightly.

7.1 Definition of Perturbation Tiebreaking
Random perturbation tiebreaking works as follows. Let f

be an essentially resolute SCF and consider a profile R ∈
T (f). We choose a perturbation P ∈ Rm! randomly accord-
ing to some probability distribution D (depending on R)
and add P to the profile R. The corresponding tiebreaking
scheme tD is then given by

tD(R)(a) = PrP∼D(f(R+ P ) = {a}).

Before analyzing appropriate candidates for the choice of
the probability distribution D, we consider general prop-
erties of random perturbation schemes. In order to be a
well-defined tiebreaking scheme, tD should be such that
tD(R)(a) = 0 for all a /∈ f(R). Intuitively, this can be
guaranteed by using a perturbation P with sufficiently small
norm |P |. Thus, after choosing P according to D, we will
multiply all entries of P by a sufficiently small number (call
this operation scaling). A natural worry is that the choice
of the multiplier influences the resulting probabilities of the
perturbation scheme. We go on to show that, under mild
conditions, this is not the case: for each profile R, there ex-
ists εR > 0 such that tD is independent of the exact scaling
of P , as long as the scaling guarantees that |P | < εR.

The mild conditions we need to prove this scaling inde-
pendence result are continuity (see Section 4) and finite lo-
cal consistency (FLC) [28]. FLC is not very restrictive: with
the exception of Dodgson’s rule (which is not homogeneous
and therefore not extendable to Rm!

≥0 anyway), every com-

mon SCF satisfies this property. For S ∈ Rn, let S denote
the closure of S.9

Definition 6. Let S ⊆ Rm!
≥0 be a set of profiles. An

SCF f is locally consistent on S if for any R1, R2 ∈ S with
f(R1) = f(R2), we have R1 + R2 ∈ S and f(R1 + R2) =
f(R1) = f(R2). f is finitely locally consistent (FLC) if
there exists a finite set of subsets {S1, . . . , St} of Rm!

≥0 such
that f is locally consistent on Si for all 1 ≤ i ≤ t and⋃

i Si = Rm!
≥0.

We will now show that the scaling parameter does not
influence the tiebreaking scheme, provided it is sufficiently

8See [16] and the references therein. In particular, perturba-
tion methods have been extensively studied in mathemati-
cal programming [11, 13, 27, 1] and computational geometry
[29, 8, 9, 20, 24].
9Our definition of FLC diverges slightly from the definition
in [28] in order to accommodate set-valued SCFs.
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Figure 3: Illustration of the proof of Theorem 3. Lines
represent separating hyperplanes and the chosen alternative
within each region is specified by a, b, or c. By continuity,
f(R) = {a, b}. We can see that the choice of εR satisfies the
conditions of Theorem 3.

small (Theorem 3). Some intuition for the proof is provided
in Figure 3. Finite local consistency allows us to find a finite
set of hyperplanes separating regions with different winners.

Theorem 3. Let f be an essentially resolute SCF satis-
fying continuity and FLC. For every R ∈ Rm!

≥0, there exists
an εR > 0 such that the following events have probability 1
for all P ∈ Rm!

≥0 with 0 < |P | < εR (irrespective of the choice
of D):

(i) f(R+ P ) = f(R+ αP ) for all 0 < α ≤ 1, and

(ii) f(R+ P ) ⊆ f(R).

Proof. Since f satisfies FLC and essential resoluteness,
there exist finitely many regions {S1, ..., Sk} such that f is
locally consistent and resolute within each region, and these
regions are convex (this is implied by local consistency). For
each pair of regions (Si, Sj), we can find a separating hyper-
plane (Hi,j) by the hyperplane separation theorem. Now
let di,j be the distance from R to Hi,j , where the distance
d(R,H) from a vector R to a hyperplane H is defined as
d(R,H) = minh∈H d(R, h). Let εR = mindi,j 6=0 di,j/2. First
we show that event (i) has probability 1. Let |P | < εR and
suppose f(R + P ) = {a} but f(R + αP ) = {b} for some
0 < α ≤ 1 (the case where |f(R+P )| > 1 or f(R+αP )| > 1
occurs with probability 0). Either R + P and R + αP are
in different regions, and there must be a separating hyper-
plane passing between them, or one (or both) of R+ P and
R + αP lie on a separating hyperplane. In the first case,
we have contradicted our choice of εR. The second case oc-
curs with probability 0 since each of the finite number of
hyperplanes have measure zero.

Now we consider event (ii). Let S ⊆ Rm!
≥0 be the set of

profiles P for which (i) holds. It suffices to show that f(R+
P ) ⊆ f(R) for all P ∈ S. Suppose there exists P ∈ S for
which this is not the case, then we could construct a sequence

(Rk)k∈N defined by Rk = R+ 1
k
P , so that (Rk)

k→∞−−−−→ R, but
there exists an a ∈ f(R+ P ) = f(Rk) with a /∈ f(R).

This gives rise to the following general approach. We draw
the perturbation P from any distribution D, and then mul-
tiply the entries of P by a sufficiently small constant so that
|P | < εR. We will say that any tiebreaking scheme of this
form is a perturbation tiebreaking scheme.

To illustrate this, we exhibit a suitable choice of εR for
plurality. For simplicity, assume that R is an integral pref-
erence profile, i.e., R ∈ Nm!

≥0.10

10While it is possible to derive εR for non-integral profiles, it
is not possible to write it down in such a clean manner.



Proposition 1. Let R ∈ Nm!
≥0. For plurality, εR = 1

2m!
satisfies the conditions of Theorem 3.

Proof. Let a ∈ f(R), b /∈ f(R), and let P be a profile
with |P | < εR. To show that εR satisfies condition (ii) of
Theorem 3, we must show that b /∈ f(R + P ). To this end,
note that the difference in the plurality score of a and that
of b is at least one, since R is integral. And the change in
plurality score of any alternative as a result of adding P to R
is at most m!|P | < m! 1

2m!
= 1

2
. Therefore, it is impossible

for b to have a plurality score as high as that of a in the
profile R + P . Finally, to see that εR satisfies condition (i)
of Theorem 3, let 0 < α < 1 and suppose that a ∈ f(R+P ).
Then the plurality score of a according to P , and therefore
also according to αP , is at least as high as that of any other
alternative in f(R). Therefore a ∈ f(R+ αP ).

It is straightforward to derive formulas for εR for a num-
ber of other common SCFs, e.g., εR = 1

2(m−1)m!
works for

Borda’s rule and εR = 1
2m!

for both STV and ranked pairs.11

7.2 Perturbation Distributions
We now turn to the question from which probability dis-

tribution D the perturbation should be drawn. Let er ∈ Nm!
≥0

denote the profile that consists of a single vote r (i.e.,
[er]r = 1 and [er]s = 0 for all s ∈ L(A) \ {r}). The fol-
lowing are three natural choices for the distribution D.

• Uniform Independent Ranking Perturbation (UIRP):
For every ranking r ∈ L(A), choose pr from [0, 1] uni-
formly at random and let P =

∑
r∈L(A) prer.

• Uniform Independent Voter Perturbation (UIVP):
For every voter v, choose pv from [0, 1] uniformly at
random and let P =

∑
v pver(v).

• Uniform Proportional Perturbation (UPP):
For every ranking r ∈ L(A), choose pr from [0, 1] uni-
formly at random and let P =

∑
r∈L(A)Rrprer.

UIRP perturbs each entry of a profile R according to the
same distribution, regardless of the size of that entry. UIVP
and UPP, on the other hand, perturb each entry according
to a distribution that depends on the number of voters cast-
ing that entry as their vote. UIVP does so by perturbing
the weight of each voter independently, while UPP draws
a perturbation for each entry of R and multiplies it by the
number of voters with that ranking as their vote.

Example 2. Consider again the preference profile R in
Figure 2 and let f be Borda’s rule. Observe that f(R) =
{a, b, c}. Since m = 3, we let ε = 1

2·2·3! = 1
24

(see the
paragraph after Proposition 1). Breaking the tie with UIRP
results in the lottery 1

3
a+ 1

3
b+ 1

3
c, and UIVP and UPP both

yield 29
96
a+ 29

96
b+ 19

48
c.

It is not trivial to derive these numbers; we used Math-
ematica to compute these probabilities. However, deriving
the exact probabilities is not actually necessary in order to
execute the tiebreaking scheme—sampling from the distri-
bution is sufficient.

11The value εR is not necessarily independent of the number
of voters, even for integral profiles. For instance, εR does
depend on n for the scoring rule given by (

√
2, 1, 0, . . . , 0).

It is not a coincidence that UIRP gives the same lottery
as PUT random order tiebreaking in this example. It can
be easily shown that the two schemes coincide for all scoring
rules (however, they differ for other SCFs). Notice that both
UIVP and UPP have t(R)(c) = 19

48
> 1

3
. The reason for this

is that c is a polarizing alternative among these four voters;
two voters prefer c to both a and b and two voters place c at
the bottom of their ranking. So, when we perturb only rank-
ings that appear as votes, c has both a higher probability of
doing very well, and of doing very badly, after perturbation.
This explains the high probability of c winning under these
schemes (and also the high probability of c doing the worst,
which we are not interested in here).

One basic property that we would want a tiebreaking
scheme to satisfy is homogeneity, stating that—just like the
corresponding property for SCFs—the result of the pertur-
bation does not change if the profile is multiplied by a con-
stant. Formally, tiebreaking scheme tD is homogeneous if it
satisfies tD(R) = tD(kR) for all R ∈ Nm!

≥0 and all k ∈ N>0.
Unfortunately, UIVP fails homogeneity. This is perhaps

not particularly surprising; given that, unlike the others, the
definition of UIVP relies on an integral number of voters, we
would not expect to be able to sensibly extend UIVP to non-
integral profiles. If we double the profile in Example 2, the
lottery returned by UIVP becomes 48739

161280
a+ 48739

161280
b+ 31901

80640
c.

Intuitively, as we add more voters, by the Central Limit
Theorem, P begins to look more and more like its entries
were drawn from a normal distribution, since each entry
is the sum of i.i.d. random variables.12 We can avoid this
problem by choosing pv from a normal distribution to begin
with. This idea gives rise to the following distribution.

• Normal Independent Voter Perturbation (NIVP):
For every voter v, draw pv according to a normal distri-
bution with mean 0 and standard deviation 1. Define
P =

∑
v∈N pver(v).

Recall that we will scale the profile P to be sufficiently
small; since, additionally, we only perturb votes that have
been cast, there will not be any negative entries in the per-
turbed profile R + P . Also, the choice of mean and stan-
dard deviation is arbitrary; the same lottery over alterna-
tives would result from any other choice. Moreover, we note
that NIVP is equivalent to drawing Pr from a normal distri-
bution with mean 0 and standard deviation

√
Rr. This latter

definition does not require the profile to be integral, allow-
ing us to naturally extend NIVP to profiles with real-valued
weights. The remainder of this section will be devoted to
characterizing NIVP and illustrating its advantages over the
other perturbation tiebreaking schemes presented.

7.3 Characterization of NIVP
We identify four properties of perturbation distributions.

• Property 1: Pr(Pr = 0|Rr = 0) = 1 for all r ∈ L(A).
This property states that the perturbation gives posi-
tive weight only to those rankings that have been cast
by at least one voter. An appealing consequence of
this property is that the perturbed profile preserves
structural characteristics of the original profile, such as

12Note that we do not need the original distribution to be
uniform for this argument to work. For example, perturbing
by simply removing each vote with some probability [19] will
also work.



membership in restricted domains (e.g., single-peaked
preferences) or the existence of clones.

• Property 2: For all R,R1, R2 with R = R1 +R2, we
have

Pr(P |R) =

∫
P1,P2:P1+P2=P

Pr(P1|R1)Pr(P2|R2).

This property states the distribution over perturba-
tions does not change if we first partition the profile
and then apply the perturbation scheme to each part
separately.

• Property 3: The resulting tiebreaking scheme tD is
homogeneous.

• Property 4: For all profiles R and rankings r ∈ L(A),
the marginal distribution for Pr has finite variance.

It is easy to show that NIVP satisfies all four of these
properties. Interestingly, it can also be shown that no other
symmetric perturbation tiebreaking scheme achieves this.

Theorem 4. NIVP is the only symmetric perturbation
tiebreaking scheme that satisfies Properties 1, 2, 3, and 4.

Proof sketch. Let R ∈ Nm!
≥0 be a profile consisting of

voters v1, v2, . . . , vn. For this proof only, for the sake of
brevity, we will also use vi to denote voter i’s ranking (which
is usually denoted by r(vi)). By Property 2, we can write

Pr(P |R) =

∫
Pv1

,PR\{v1}:
Pv1

+PR\{v1}=P

Pr(Pv1 |v1)Pr(PR\{v1}|R\{v1}).

Continuing along the same lines on Pr(PR\{v1}|R\{v1}),
we see that Pr(P |R) can be expressed entirely in terms
of Pr(Pvi |vi). And, by Property 1, the perturbation vec-
tor Pvi contains m! − 1 zeroes (for all rankings not equal
to vi). So we can generate Pvi by drawing a single number.
By symmetry, we require that Pvi is drawn from the same
distribution for all votes. Lastly, homogeneity implies that
Pvi is drawn from a normal distribution: Suppose that this
were not the case and consider a profile R, with Rr > 0 for
some ranking r, for which |f(R)| > 1. Consider multiply-
ing R by a large constant k. By the Central Limit Theorem,
the distribution of Pr will converge to a normal distribution
for large k since Pr is the sum of many individual draws
from a distribution with finite variance (from Property 4).
Thus, if Pvi is not drawn from a normal distribution, ho-
mogeneity is violated. And we have already noted that any
perturbation tiebreaking scheme that draws each Pvi from
the same normal distribution is equivalent to NIVP.

We note that the properties are independent. UIVP satis-
fies Properties 1, 2, and 4 but not Property 3. UPP satisfies
Properties 1, 3, and 4 but not Property 2. For a rule which
satisfies Properties 2, 3, and 4 but violates Property 1, sup-
pose that for every voter we draw a vector Pv as follows: For
each 1 ≤ i ≤ m!, draw (Pv)i from a normal distribution with
mean 0 and standard deviation 1. We let P =

∑
v∈V Pv. In

the same way as for NIVP, we can naturally extend this
scheme to fractional profiles by simply drawing each entry
in P from a normal distribution with mean 0 and standard
deviation

√
n. Lastly, we note that we can satisfy Proper-

ties 1, 2, and 3 while violating Property 4 by defining P in

the same way as for NIVP, but drawing pv from a stable
distribution with infinite variance, for example the Cauchy
distribution.

7.4 Advantages of NIVP
We have already mentioned that perturbation tiebreaking

schemes satisfying Property 1 respect structural character-
istics such as membership in a restricted domain or the exis-
tence of clone sets. One reason why this is desirable is that
many standard computational problems get much harder
when leaving a well-structured domain such as single-peaked
preferences [10, 3]. With respect to clone sets, i.e., sets of
alternatives that are ranked consecutively by each voter, a
desirable property of tiebreaking schemes is independence of
clones [25]. This property requires that, whenever clones
of an alternative a are introduced, the only effect this has
on the tiebreaking probabilities is that the probability mass
of alternative a is divided among its clones (and all other
alternatives still have the same probability as in the original
profile). It can be shown that NIVP satisfies independence
of clones, while UIRP and UPP do not (even though UPP
satisfies Property 1).

Another advantage of NIVP is that the distribution is easy
to sample from. All we have to do is draw one random num-
ber for every ranking that is cast as a vote (see Section 7.2).
By contrast, the straightforward implementation of UIRP
tiebreaking requires us to generate m! random numbers to
generate a perturbation vector P .

8. CONCLUSION
It is well understood that how the ties of a voting rule are

broken can significantly impact how voters vote strategically,
the complexity of standard problems in computational social
choice, whether the rule satisfies certain axiomatic proper-
ties, etc. In spite of this, often an ad-hoc tiebreaking scheme
is used, or none is specified at all.

In this paper, we addressed these issues by investigating
tiebreaking schemes that can be generally applied. We first
analyzed how intermediate ties in multi-stage rules can be
handled. In particular, we investigated the notion of parallel
universes tiebreaking (PUT), which is a generally applica-
ble tie-handling procedure but has, to our knowledge, not
previously been defined in a general manner. We define it
in a way that is dependent on a tree used to compute the
outcome of the voting rule, and show that in fact any cor-
rect tree will lead to the same definition provided certain
properties hold.

We then moved on to methods that actually break
ties. We reviewed some standard tiebreaking schemes and
pointed out some of their drawbacks, such as high computa-
tional complexity and dependence on the tree used to com-
pute the outcome. In the remainder, we focused on schemes
that break ties by perturbing the profile in various ways.
Most notably, we introduced the NIVP perturbation scheme,
which can be efficiently executed and is the unique pertur-
bation scheme satisfying several desirable properties.

In this paper, we have paid close attention to axiomatic
properties of how we break ties, as well as the computational
complexity of executing the tiebreaking scheme. Future re-
search could be devoted to studying other properties of our
tiebreaking schemes, such as their effect on strategic voting
and on the complexity of problems such as manipulation,
control, bribery, etc.
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