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ABSTRACT
Algorithms for solving Stackelberg games are used in an ever-
growing variety of real-world domains. Previous work has ex-
tended this framework to allow the leader to commit not only to
a distribution over actions, but also to a scheme for stochastically
signaling information about these actions to the follower. This can
result in higher utility for the leader. In this paper, we extend this
methodology to Bayesian games, in which either the leader or the
follower has payoff-relevant private information or both. This leads
to novel variants of the model, for example by imposing an incen-
tive compatibility constraint for each type to listen to the signal
intended for it. We show that, in contrast to previous hardness
results for the case without signaling [5, 16], we can solve unre-
stricted games in time polynomial in their natural representation.
For security games, we obtain hardness results as well as efficient
algorithms, depending on the settings. We show the benefits of our
approach in experimental evaluations of our algorithms.

Keywords
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1. INTRODUCTION
In the algorithmic game theory community, and especially the

multiagent systems part of that community, there has been rapidly
increasing interest in Stackelberg models where the leader can
commit to a mixed strategy. This interest is driven in part by a
number of high-impact deployed security applications [25]. One
of the advantages of this framework—as opposed to, say, comput-
ing a Nash equilibrium of the simultaneous-move game—is that it
sidesteps issues of equilibrium selection. Another is that in two-
player normal-form games, an optimal mixed strategy to commit
to can be found in polynomial time [5]. There are limits to this
computational advantage, however; once we extend to three-player
games or Bayesian games, the computational problem becomes
hard again [5]. (In a Bayesian game, some of the players have
private information that is relevant to the payoffs; their private in-
formation is encoded by their type.)

As has previously been observed [4, 28, 23], the leader may be
able to do more than commit to a mixed strategy. The leader may
additionally be able to commit to send signals to the follower(s)
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that are correlated with the action she has chosen. This ability can
of course never hurt the leader: she always has the choice of send-
ing an uninformative signal. In a two-player normal-form game, it
turns out that no benefit can be had from sending an informative
signal. This is because the expected leader utility conditioned on
each signal, which corresponds to a posterior belief of the leader’s
action, is weakly dominated by the expected leader utility of com-
mitting to the optimal mixed strategy [4]. But this is no longer true
in games with three or more players. Moreover, intriguingly, the
enriched problem with signaling can still be solved in polynomial
time in these games [4]. The idea of adding signals has also al-
ready been explored in security games [28], however these games
were not Bayesian (but with richer game structure).

In this paper, we extend this line of work to Bayesian Stack-
elberg Games (BSGs). We suppose that, when the follower has
multiple possible types, the leader is able to send a separate signal
to each of these types, without learning what the type is. For exam-
ple, consider a security game on a rail network in which we aim to
catch ticketless travelers (or, better yet, give them incentives to buy
a ticket). Here, the attacker’s type could encode at which location
he starts his journey. Then, by making a separate announcement
at each station, we send a separate signal to each type. As an-
other example, we may send different signals over different (say)
radio frequencies. In this case, each follower type receives a sepa-
rate signal depending on the frequency to which he is listening. In
this latter example (unlike the former), we also require an incen-
tive compatibility (IC) constraint: no type should find it beneficial
to switch over to a different frequency, since we have no way of
forcing a type to listen to a particular frequency.

Besides considering the case of multiple follower types, we also
consider the case of multiple leader types. Here, the signal sent
by the leader can be correlated with her type as well as her action.
Among other examples, this allows us to capture models where the
leader is a seller of some item, and the type of the leader corre-
sponds to knowledge about, for example, the quality of the item.
She can then send an informative (but perhaps not completely in-
formative) signal about this quality to the buyer. Such models are
sometimes studied in the auction design literature [8, 18, 12], but
here our interest is in generally applicable algorithms.

Our Contributions: We consider signaling in different models
of Bayesian Stackelberg games, and essentially pin down the com-
putational complexity in each. For the case with multiple follower
types (but a single leader type), we show that the optimal combina-
tions of mixed strategies and signaling schemes can be computed
in polynomial time using linear programming.1 This is the case

1One may wonder whether this just follows from the fact that we
can model Bayesian games by representing each type as a single
player, thereby reducing it to a multiplayer game. But this does not



whether an incentive compatibility constraint applies or not. How-
ever, for security games, we show that the problem is NP-hard,
though we do identify a special case that can be solved efficiently.
We also provide hardness evidence that this special case is almost
the best one can hope for in terms of polynomial computability.

For the case with multiple leader types (but a single follower
type), we show that the optimal combinations of mixed strate-
gies and signaling schemes can also be computed in polynomial
time. Moreover, the polynomial-time solvability extends to secu-
rity games in this setting. We note that our results (both hardness
and polynomial-time solvability) can be easily generalized to the
case with both multiple leader and follower types, thus we will not
discuss it explicitly in the paper. We conclude with an experimental
evaluation of our approach.

2. AN EXAMPLE OF STACKELBERG
COMPETITION

The Stackelberg model was originally introduced to capture mar-
ket competition between a leader (e.g., a leading firm in some area)
and a follower (e.g., an emerging start-up). The leader has an ad-
vantage of committing to a strategy (or equivalently, moving first)
before the follower makes decisions. Here we consider a Bayesian
case of Stackelberg competition where the leader does not have full
information about the follower.

For example, consider a market with two firms, a leader and a
follower. The leader specializes in two products, product 1 and
product 2. The follower is a new start-up which focuses on only one
product. It is publicly known that the follower will focus on product
1 with probability 0.55 (call him a follower of type θ1 in this case),
and product 2 with probability 0.45 (call him a follower of type
θ2). But the realization is only known to the follower. The leader
has a research team, and must decide which product to devote this
(indivisible) team to, or to send them on vacation. On the other
hand, the follower has two options: either entering the market and
developing the product he focuses on, or leaving the market.

Naturally, the follower wants to avoid competition with the
leader’s research team. In particular, depending on the type of
the follower, the leader’s decision may drive the follower out of
the market or leave the follower with a chance to gain substan-
tial market share. This can be modeled as a Bayesian Stackelberg
Game (BSG) where the leader has one type and the follower has
two possible types. To be concrete, we specify the payoff matri-
ces for different types of follower in Figure 1, where the leader’s
action Li simply denotes the leader’s decision to devote the team
to product i for i ∈ {1, 2, ∅}; ∅ means a team vacation. Similarly,
the follower’s action Fi means the follower focuses on products
i ∈ {1, 2, ∅} where ∅ means leaving the market. Notice that the
payoff matrices force the follower to only produce the product that
is consistent with his type, otherwise he gets utility −∞. The util-
ity for the leader is relatively simple: the leader gets utility 1 only
if the follower (of any type) takes action F∅, i.e., leaving the mar-
ket, and gets utility 0 otherwise. In other words, the leader wants
to drive the follower out of the market.

Possessing a first-mover advantage, the leader can commit to a
randomized strategy to assign her research team so that it maxi-
mizes her utility in expectation over the randomness of her mixed
strategy and the follower types. Unfortunately, finding the optimal
mixed strategy to commit to turns out to be NP-hard for BSGs in
general [5]. Nevertheless, by exploiting the special structure in this
example, it is easy to show that any mixed strategy that puts at least

work, because the corresponding normal form of the game would
have size exponential in the number of types.

F∅ F1 F2

L∅ 0 2 −∞
L1 0 −1 −∞
L2 0 2 −∞

type θ1, p = 0.55

F∅ F1 F2

L∅ 0 −∞ 1
L1 0 −∞ 1
L2 0 −∞ −1

type θ2, p = 0.45

Figure 1: Payoff Matrices for Followers of Different Types

2/3 probability onL1 is optimal for the leader to commit to. This is
because to drive a follower of type θ1 out of the market, the leader
has to take L1 with probability at least 2/3. Likewise, to drive a
follower of type θ2 out of the market, the leader has to take L2 with
probability at least 1/2. Since 2/3 + 1/2 > 1, the leader cannot
achieve both, so the optimal choice is to drive the follower of type
θ1 (occurring with a higher probability) out of the market so that
the leader gets utility 0.55 in expectation.

Notice that the leader commits to the strategy without knowing
the realization of the follower’s type. This is reasonable because the
follower, as a start-up, can keep information confidential from the
leader firm at the initial stage of the competition. However, as time
goes on, the leader will gradually learn the type of the follower.
Nevertheless, the leader firm cannot change her chosen action at
that point because, for example, there is insufficient time to switch
to another product. Can the leader still do something strategic at
this point? In particular, we study whether the leader can benefit
by partially revealing her action to the follower after observing the
follower’s type. To be concrete, consider the following leader pol-
icy. Before observing the follower’s type, the leader commits to
choose action L1 and L2 uniformly at random, each with proba-
bility 1/2. Meanwhile, the leader also commits to the following
signaling scheme. If the follower has type θ1, the leader will send a
signal σ∅ to the follower when the leader takes action L1, and will
send either σ∅ or σ1 uniformly at random when the leader takes
action L2. Mathematically, the signaling scheme for the follower
of type θ1 is captured by the following probabilities.

Pr(σ∅|L1, θ1) = 1 Pr(σ1|L1, θ1) = 0;
Pr(σ∅|L2, θ1) = 1

2
Pr(σ1|L2, θ1) = 1

2
.

On the other hand, if the follower has type θ2, the leader will always
send σ∅ regardless of what action she has taken.

When a follower of type θ1 receives signal σ∅ (occurring with
probability 3/4), he infers the posterior belief of the leader’s strat-
egy as Pr(L1|σ∅, θ1) = 2/3 and Pr(L2|σ∅, θ1) = 1/3, thus
deriving an expected utility of 0 from taking action F1. Assum-
ing the follower breaks ties in favor of the leader,2 he will then
choose action F∅, leaving the market. On the other hand, if the
follower receives σ1 (occurring with probability 1/4), he knows
that the leader has taken action L2 for sure; thus the follower will
take action F1, achieving utility 2. In other words, the signals σ∅
and σ1 can be viewed as recommendations to the follower to leave
the market (σ∅) or develop the product (σ1), though we emphasize
that a signal has no meaning beyond the posterior distribution on
leader’s actions that it induces. As a result, the leader drives the
follower out of the market 3/4 of the time. On the other hand, if
the follower has type θ2, since the leader reveals no information,
the follower derives expected utility 0 from taking F2, and thus
will choose F0 in favor of the leader. In expectation, the leader gets
utility 3

4
× 1

2
+ 1

2
= 0.875(> 0.55). Thus, the leader achieves

better utility by signaling.
The design of the signaling scheme above depends crucially on

the fact that the leader can distinguish different follower types be-
2This is without loss of generality because the leader can always
slightly tune the probability mass to make the follower slightly pre-
fer F∅.



fore sending the signals and will signal differently to different fol-
lower types. This fits the setting where the leader can observe the
follower’s type after the leader takes her action and then signals
accordingly. However, in many cases, the leader is not able to ob-
serve the follower’s type. Interestingly, it turns out that the leader
can in some cases design a signaling scheme which incentivizes the
follower to truthfully report his type to the leader and still benefit
from signaling. Note that the signaling scheme above does not sat-
isfy the follower’s incentive compatibility constraints – if the fol-
lower is asked to report his type, a follower of type θ2 would be
better off to report his type as θ1. This follows from some simple
calculation, but an intuitive reason is that a follower of type θ2 will
not get any information if he truthfully reports θ2, but will receive
a more informative signal, thus benefit himself, by reporting θ1.

Now let us consider another leader policy. The leader commits
to the mixed strategy (L∅, L1, L2) = (1/11, 6/11, 4/11). Inter-
estingly, this involves sometimes sending the research team on va-
cation! Meanwhile, the leader also commits to the following more
sophisticated signaling scheme. If the follower reports type θ1, the
leader will send signal σ∅ whenever L1 is taken as well as 3

4
of

the time that L2 is taken; otherwise the leader sends signal σ1. If
the follower reports type θ2, the leader sends signal σ∅ whenever
L2 is taken as well as 2

3
of the time that L1 is taken; otherwise

the leader sends signal σ2. It turns out that this policy is incen-
tive compatible – truthfully reporting the type is in the follower’s
best interests – and achieves the maximum expected leader utility
17
22
≈ 0.773 ∈ (0.55, 0.875) among all such policies.

Justification of Commitment: The assumption of commitment
to strategies is well motivated, and has been justified, in many ap-
plications, e.g., market competition [9] and security [25]. This is
usually due to the leader’s first-mover advantage. The assumption
of commitment to signaling schemes is justified on the grounds of
games that are played repeatedly (e.g., a leading firm plays repeat-
edly with start-ups that can show up and fade away), so the fol-
lower can learn the signaling scheme - how the signals correlate
with leader actions taken. On the other hand, to balance the short
term utility and long-term credibility, the leader has incentives to
follow the signaling scheme in order to build a reputation about her
strategy of disclosing information. We refer the reader to [24] for
more thorough discussions of this phenomenon.

Remark: This example shows that the additional ability of com-
mitting to a signaling scheme can profoundly affect both players’
strategies. We study how such additional commitment changes the
game as well as the computation of the leader’s optimal policy. The
rest of this paper is organized as follows. In Section 3 we general-
ize the above example to BSGs, and also examine its application to
Bayesian Stackelberg Security Games, a model of growing interest
in modeling various security challenges. Note that the above exam-
ple only concerned the case where the follower has multiple types.
In Section 4, we consider a variant of the model where the leader
has multiple types (but the follower has only one type), and seek to
compute the optimal leader policy. We show simulation results in
Section 5 and conclude in Section 6.

3. SINGLE LEADER TYPE, MULTIPLE
FOLLOWER TYPES

3.1 The Model
In this section, we generalize the example in Section 2 and con-

sider how the leader’s additional ability of committing to a sig-
naling scheme changes the game and the computation. We start
with a Bayesian Stackelberg Game (BSG) with one leader type

1 

Leader commits  
(strategy + signaling scheme) 

Leader “observes” follower type 
and samples a signal  

Follower’s type is 
realized 

Follower observes the 
signal and plays 

time 

Leader plays an 
action 

Figure 2: Timeline of the BSG with Multiple Follower Types.

and multiple follower types. Let Θ denote the set of all the fol-
lower types. An instance of such a BSG is given by a set of tuples
{(Aθ, Bθ, λθ)}θ∈Θ where Aθ, Bθ ∈ Rm×n are the payoff ma-
trices of the leader (row player) and the follower (column player)
respectively when the follower has type θ, which occurs with prob-
ability λθ . We use [m] and [n] to denote the leader’s and follower’s
pure strategy set respectively. For convenience, we assume that ev-
ery follower type has the same number of actions (i.e., n) in the
above notation. This is without loss of generality since we can al-
ways add “dummy" actions with payoff −∞ to both players. We
use aθij [bθij ] to denote a generic entry of Aθ [Bθ]. If Aθ = −Bθ
for all θ ∈ Θ, we say that the BSG is zero-sum. Following the stan-
dard assumption of Stackelberg games, we assume that the leader
can commit to a mixed strategy. Such a leader strategy is optimal if
it results in maximal leader utility in expectation over the random-
ness of the strategy and follower types, assuming each follower
type best responds to the leader’s mixed strategy.3 It is known that
computing the optimal mixed strategy, also known as the Bayesian
Strong Stackelberg Equilibrium (BSSE) strategy, to commit to is
NP-hard in such a BSG [5]. A later result strengthened the hard-
ness to approximation – no polynomial time algorithm can give a
non-trivial approximation ratio in general unless P=NP [16].

We consider a richer model where the defender can commit not
only to a mixed strategy but also to a scheme, often known as a
signaling scheme, of partially releasing information regarding the
action she is currently playing i.e., the sample from the leader’s
committed mixed strategy. Formally, the leader commits to a mixed
strategy x ∈ ∆m, where ∆m is the m-dimensional simplex, and a
signaling scheme ϕwhich is a stochastic map from Θ×[m] to a set
of signals Σ. In other words, the sender randomly chooses a signal
to send based on the action she currently plays and the follower
type she observes. We call the pair

(x, ϕ) where x ∈ ∆m; ϕ : Θ× [m]
rnd−→ Σ (1)

a leader policy. After the commitment, the leader samples an ac-
tion to play. Then the follower’s type is realized, and the leader ob-
serves the follower’s type and samples a signal. We assume that the
follower has full knowledge of the leader policy. Upon receiving a
signal, the follower updates his belief about the leader’s action and
takes a best response. Figure 2 illustrates the timeline of the game.

We note that if the leader cannot distinguish different follower
types and has to send the same signal to all different follower types,
then signaling does not benefit the leader (for the same reason as the
non-Bayesian setting). In this case, she should simply commit to
the optimal mixed strategy. The leader only benefits when she can
target different follower types with different signals. In many cases,
like the example in Section 2, the leader gets to observe the fol-
lower’s type when it is realized (but after her action is completed)
and can therefore choose to signal differently to different follower
types. Moreover, in practice it is sometimes natural for the leader to
send different signals to different follower types even without gen-

3Note that the follower cannot observe the leader’s realized action,
which is a standard assumption in Stackelberg games.



uinely learning their types, e.g., the follower’s type may be defined
by their location, in which case we can send signals using location-
specific devices such as physical signs or radio transmission – this
fits our model just as well. We will elaborate one such example
when discussing security games.

3.2 Commitment to Optimal Leader Policy
We first consider the case where the leader can explicitly observe

the follower’s type, and thus can signal differently to different fol-
lower types, but this would also fit the location based model. We
start with a simple observation.

OBSERVATION 3.1 (SEE, E.G., [15]). There exists an opti-
mal signaling scheme using at most n signals with signal σj rec-
ommending action j ∈ [n] to the follower.

Observation 3.1 follows simply from the fact that if two signals re-
sult in the same follower best-response action, we can merge these
signals, resulting in a new signal without changing the follower’s
best response action and the leader’s utility. As a result, for the rest
of the paper we assume that Σ = {σj}j∈[n].

THEOREM 3.2. The optimal leader policy can be computed in
poly(m,n, |Θ|) time by linear programming.

PROOF. Let x = (x1, ..., xm) ∈ ∆m be the leader’s mixed
strategy to commit to. As a result of Observation 3.1, the signaling
scheme ϕ can be characterized by ϕ(j|i, θ) which is the probabil-
ity of sending signal σj conditioned on the leader’s (pure) action
i and the follower’s type θ. Then, pθij = xi · ϕ(j|i, θ) is the joint
probability that the leader plays pure strategy i and sends signal σj ,
conditioned on observing the follower of type θ. Then the follow-
ing linear program computes the optimal leader policy captured by
variables {xi}i∈[m] and {pθij}i∈[m],j∈[n],θ∈Θ.

maximize
∑
θ∈Θ λθ

∑
ij p

θ
ija

θ
ij

subject to
∑n
j=1 p

θ
ij = xi, for i ∈ [m], θ ∈ Θ.∑m

i=1 p
θ
ijb

θ
ij ≥

∑m
i=1 p

θ
ijb

θ
ij′ , for θ, j 6= j′.∑m

i=1 xi = 1
pθij ≥ 0, for all i, j, θ.

.
(2)

The first set of constraints mean that the summation of probability
mass pθij – the joint probability of playing pure strategy i and send-
ing signal σj conditioned on follower type θ – over j should equal
the probability of playing action i for any type θ. The second set
of constraints are to guarantee that the recommended action j by
signal σj is indeed the follower’s best response.4

Given any game G, let Usig(G) be the leader’s expected utility
by taking the optimal leader policy computed by LP (2). Moreover,
let UBSSE(G) be the leader’s utility in the BSSE, i.e., the expected
leader utility by committing to (only) the optimal mixed strategy.

PROPOSITION 3.3. If G is a zero-sum BSG, then Usig(G) =
UBSSE(G). That is, the leader does not benefit from signaling in
zero-sum BSGs.

The intuition underlying Proposition 3.3 is that, in a situation of
pure competition, any information volunteered to the follower will
be used to “harm" the leader. In other words, signaling is only
helpful when the game exhibits some “cooperative components".
We defer the formal proof to the appendix at the end of this paper.

Remark: Notice that computing the optimal mixed strategy (as-
suming no signaling) to commit to is NP-hard in general for the
4This is often called “obedience".

setting above (even NP-hard to approximate within any non-trivial
ratio), as shown in [5, 16]. Interestingly, it turns out that when we
consider a richer model with signaling, the problem becomes easy!
Intuitively, this is because the signaling scheme “relaxes" the game
by introducing correlation between the leader’s and follower’s ac-
tion (via the signal). Such correlation allows more efficient compu-
tation. Similar intuition can be seen in the literature on computing
Nash equilibria (hard for two players [6, 3]) and correlated equilib-
ria (easy in fairly general settings [20, 14]).

3.3 Incentivizing the Follower Type
In many situations, it is not realistic to expect that the leader can

observe the follower’s type. For example, the follower’s type may
be whether he has a high or low value for an object, which is not
directly observable. In such cases, the leader can ask the follower
to report his type. However, it is not always in the follower’s best
interests to truthfully report his own type since the signal that is in-
tended for a different follower type might be more beneficial to the
follower (recall the example in Section 2). In this section, we con-
sider how to compute an optimal incentive compatible (IC) leader
policy that incentivizes the follower to truthfully report his type,
and meanwhile benefits the leader.

We note that Observation 3.1 still holds in this setting. To see
this, consider a follower of type θ that receives more than one sig-
nal, each resulting in the same follower best response. Then, as
before, we can merge these signals without harming the follower
of type θ. But if a follower of type β 6= θ misreports his type
as θ, receiving the merged signal provides less information than
receiving one of the unmerged signals. Therefore, if the follower
of type β had no incentive to misreport type θ before the signals
were merged, he has no incentive to misreport after the signals are
merged. So any signaling scheme with more than n signals can be
reduced to an equivalent scheme with exactly n signals.

THEOREM 3.4. The optimal incentive compatible (IC) leader
policy can be computed in poly(m,n, |Θ|) time by linear program-
ming, assuming the leader does not observe the follower’s type.

PROOF. Similar to Section 3.2, we still use variables x ∈ ∆m

and {pθij}i∈[m],j∈[n],θ∈Θ to capture the leader’s policy. Then
αθj =

∑m
i=1 p

θ
ij is the probability of sending signal j when the

follower has type θ. Now consider the case where the follower re-
ports type β, but has true type θ. When the leader recommends
action j (assuming a follower of type β), which now is not neces-
sarily the follower’s best response due to the follower’s misreport,
the follower’s utility for any action j′ is 1

α
β
j

∑m
i=1 p

β
ijb

θ
ij′ . There-

fore, the follower’s action will be arg maxj′
1

α
β
j

∑m
i=1 p

β
ijb

θ
ij′ with

expected utility maxj′
1

α
β
j

∑m
i=1 p

β
ijb

θ
ij′ . As a result, the expected

utility for the follower of type θ, but misreporting type β, is

U(β; θ) =

n∑
j=1

[
αβj ×max

j′

1

αβj

m∑
i=1

pβijb
θ
ij′

]
=

n∑
j=1

[
max
j′

m∑
i=1

pβijb
θ
ij′

]
Therefore, to incentivize the follower to truthfully report his

type, we only need to add the incentive compatibility constraints
U(θ; θ) ≥ U(β; θ). Using the condition maxj′

∑m
i=1 p

θ
ijb

θ
ij′ =∑m

i=1 p
θ
ijb

θ
ij , i.e., the recommended action j by σj is indeed the

follower’s best response when the follower has type θ, we have

U(θ; θ) =
∑n
j=1

[
maxj′

∑m
i=1 p

θ
ijb

θ
ij′
]

=
∑n
j=1

∑m
i=1 p

θ
ijb

θ
ij

Therefore, incorporating the above constraints to LP (2) gives the
following optimization program which computes an optimal incen-



tive compatible leader policy.

maximize
∑
θ∈Θ λθ

∑
ij p

θ
ija

θ
ij

subject to
∑n
j=1 p

θ
ij = xi, for all i, θ.∑m

i=1 p
θ
ijb

θ
ij ≥

∑m
i=1 p

θ
ijb

θ
ij′ , for j 6= j′.∑n

j=1

∑m
i=1 p

θ
ijb

θ
ij ≥∑n

j=1

[
maxj′

∑m
i=1 p

β
ijb

θ
ij′

]
, for β 6= θ.∑m

i=1 xi = 1
pθij ≥ 0, for all i, j, θ.

(3)
Notice that

∑n
j=1

[
maxj′

∑m
i=1 p

β
ijb

θ
ij′

]
is a convex function,

therefore the above is a convex program. By standard tricks, the
convex constraint can be converted to a set of polynomially many
linear constraints (see, e.g., [2]).

Given any BSG G, let UIC(G) be the expected leader utility by
playing an optimal incentive compatible leader policy computed
by Convex Program (3). The following theorem captures the utility
ranking of the different models.

PROPOSITION 3.5 (UTILITY RANKING).

Usig(G) ≥ UIC(G) ≥ UBSSE(G).

PROOF. The first inequality holds because any feasible solution
to Program (3) must also be feasible to LP (2). The second inequal-
ity follows from the fact that the BSSE is an incentive compatible
leader policy where the signaling scheme simply reveals no infor-
mation to any follower. This scheme is trivially incentive compati-
ble because it is indifferent to the follower’s report.

Relation to Other Models. Our model in this section relates to
the model of Persuasion with Privately Informed Receivers (“fol-
lowers" in our terminology) by Kolotilin et al. [1]. Though in a
different context, the model of Kolotilin et al. is essentially a BSG
played between a leader and a follower of type only known to him-
self. In our model, players’ payoffs are affected by the leader’s
action, thus the leader first commits to a mixed strategy and then
signals her sampled action to the follower with incentive compati-
bility constraints. In [1], the leader does not have actions. Instead,
the payoffs are determined by some random state of nature, which
the leader can privately observe but does not have control over. The
follower only has a prior belief about the state of nature, analogous
to the follower knowing the leader’s mixed strategy in our model.
Kolotilin et al. study how the leader can signal such exogenously
given information to the follower with incentive compatibility con-
straints. Mathematically, this corresponds to the case where x in
Program (3) is given a-priori instead of being designed.

3.4 Security Games
In this section we consider the Bayesian Security Games played

between a defender (leader) and an attacker (follower). Our results
here are generally negative – the optimal leader policy becomes
hard to compute even in the simplest of the security games. In par-
ticular, we consider a security game with n targets and k (< n)
identical unconstrained security resources. Each resource can be
assigned to at most one target; a target with a resource assigned is
called covered, otherwise it is uncovered. Therefore, the defender
pure strategies are subsets of targets (to be protected) of cardinality
k. On the other hand, the attacker has n actions – attack any one of
the n targets. The attacker has a private type θ which is drawn from
finite set Θ with probability λθ . The attacker is privy to his own
type, but the defender only knows the distribution {λθ}θ∈Θ. This
captures many natural security settings. For example, in airport pa-
trolling, the attacker could either be a terrorist or a regular policy

violator as modeled in [22]. In wildlife patrolling, the type of an
attacker could be the species the attacker is interested in [10]. If the
attacker chooses to attack target i ∈ [n], players’ utilities depend
not only on whether target i is covered or not, but also on the at-
tacker’s type θ. We use Ud/ac/u (i|θ) to denote the defender/attacker
(d/a) utility when target i is covered/uncovered (c/u) and an at-
tacker of type θ attacks target i.

Notice that the leader now has
(
n
k

)
pure strategies, thus the natu-

ral LP has exponential size. Nevertheless, in security games we can
sometimes solve the game efficiently by exploiting compact repre-
sentations of the defender’s strategies. Unfortunately, we show this
is not possible here. Interestingly, it turns out that the hardness of
the problem depends on how many targets an attacker is interested
in. In particular, we say that an attacker of type θ is not interested
in attacking target i if there exists j such that Uau (i|θ) < Uac (j|θ).
That is, even when target i is totally uncovered and target j is fully
covered, the attacker still prefers attacking target j – thus target i
will never be attacked by an attacker of type θ. Otherwise we say
that an attacker of type θ is interested in attacking target i. One
might imagine that if an attacker is only interested in a small num-
ber of targets, this should simplify the computation. Interestingly,
it turns out that this is not the case.

PROPOSITION 3.6. Computing the optimal defender policy in
a Bayesian Stackelberg security game (both with and without type-
reporting IC constraints) is NP-hard, even when the defender pay-
off does not depend on the attacker’s type and when each type of
attacker is interested in attacking at most four targets.

The proof of Proposition 3.6 requires a slight modification of
a similar proof in [17], and is provided in the appendix just for
completeness. Our next proposition shows that we are able to com-
pute the optimal defender policy in a restricted setting. This setting
is motivated by fare evasion deterrence [29] where each attacker
(i.e., a passenger) is only interested in attacking (i.e., stealing a ride
from) one specific target (i.e., the metro station nearby), or choos-
ing to not attack (e.g., buying a ticket) in which case both play-
ers get utility 0. Formally, we model this as a setting where each
attacker type is interested in two targets: one type-specific target
and one common target t∅ (corresponding to the option of not at-
tacking). If t∅ is attacked, each player gets utility 0 regardless of
whether t∅ is protected or not – we call t∅ coverage-invariant for
this reason.5

PROPOSITION 3.7. Suppose each attacker type is interested in
two targets: the common coverage-invariant target t∅ and a type-
specific target. Then the defender’s optimal policy (without type-
reporting IC constraints) can be computed in poly(m,n, |Θ|) time.

The proof of Proposition 3.7 crucially exploits the fact that each
player’s utility is “coverage-invariant" on target t∅. As a result, the
defender will not cover t∅ at all at optimality. Therefore, for any
attacker of type θ who is interested in target i and t∅, the defender
only needs to signal information about the protection of target i.
This allows us to write a linear program. The proof is deferred to
the appendix. Note that when we take incentive compatibility con-
straints into account, the situation becomes more intricate. It could
be the case that an attacker is not interested in attacking a target,
but would still like to receive an informative signal regarding its
coverage status in order to infer some information about the distri-
bution of resources. This is reminiscent of information leakage as
described by Xu et al. [27], and our proof does not naturally extend
to this setting.
5The utility 0 is not essential so long as t∅ is coverage-invariant.
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Figure 3: Timeline of the BSG With Multiple Leader Types

Interestingly, our next result shows that the restriction in Propo-
sition 3.7 is almost necessary for efficient computation, as evidence
of computational hardness manifests when we slightly go beyond
the condition there.

PROPOSITION 3.8. The defender oracle problem 6 is NP-hard
(both with and without type-reporting IC constraints), even when
each type of attacker is interested in two targets.

4. MULTIPLE LEADER TYPES, SINGLE
FOLLOWER TYPE

4.1 The Model
Similarly to Section 3, we still start with the normal-form

Bayesian Stackelberg Game, but with multiple leader types and
a single follower type. Following the notations in Section 3,
an instance of such a BSG is also given by a set of tuples
{(Aθ, Bθ, λθ)}θ∈Θ where Aθ, Bθ ∈ Rm×n are the payoff ma-
trices of the leader (row player) and the follower (column player)
respectively. However, Θ now is the set of leader types and λθ is
the probability that the leader has type θ. Among its many applica-
tions, one key motivation of this model is from security domains.
In security games, the follower, i.e., the attacker, usually does not
have full information regarding the importance and vulnerability of
the targets for attack, while the leader, i.e., the defender, possesses
much better knowledge. This can be modeled as a BSG where the
leader has multiple types and the single-type follower has a prior
belief regarding the leader’s types.

It is known that in this case, a set of linear programs suffices to
compute the optimal mixed strategy to commit to [5]. We consider
a richer model where the leader can additionally commit to a pol-
icy, namely a signaling scheme, of partially releasing her type and
action. Formally, the leader commits to a mixed strategy xθ for
each realized type θ and a signaling scheme ϕ which is a stochastic
map from Θ× [m] to Σ. We call the pair

({xθ}θ∈Θ, ϕ) where xθ ∈ ∆m; ϕ : Θ× [m]
rnd−→ Σ (4)

a leader policy in this setting. The game starts with the leader’s
commitment. Afterwards, the leader observes her own type, and
then samples an action and a signal accordingly. The follower ob-
serves the signal and best responds. Figure 3 illustrates the timeline
of the game.

4.2 Commitment to Optimal Leader Policy
Similarly to Observation 3.1, it is easy to see there exists an opti-

mal leader policy with n signals where each signal recommends an
action to the follower. Therefore, without loss of generality, we as-
sume Σ = {σ1, ..., σn} where σj is a signal recommending action
j to the follower.

6The optimal policy can be computed by an LP with exponential
size. The defender oracle is essentially the dual of the LP. See the
Appendix for a derivation of the defender oracle and proof of the
hardness.

THEOREM 4.1. The optimal leader policy defined in Formula
(4) can be computed in poly(m,n, |Θ|) time by linear program-
ming.

PROOF. To represent the signaling scheme ϕ, let ϕ(j|i, θ) be
the probability of sending signal σj , conditioned on the realized
leader type θ and pure strategy i. Then pθij = ϕ(j|i, θ) · xθ(i) is
the joint probability for the leader to take (pure) action i and send
signal σj , conditioned on a realized leader type θ. The following
linear program computes the optimal {pθij}i∈[m],j∈[n],θ∈Θ.7

maximize
∑
θ∈Θ λθ

∑
ij p

θ
ija

θ
ij

subject to
∑m
i=1

∑n
j=1 p

θ
ij = 1, for θ ∈ Θ.∑

i,θ λθp
θ
ijb

θ
ij ≥

∑
i,θ λθp

θ
ijb

θ
ij′ , for j 6= j′.

pθij ≥ 0, for all i, j, θ.
(5)

By letting xθ(i) =
∑n
j=1 p

θ
ij and ϕ(j|i, θ) = pθij/x

θ(i), we can
recover the optimal defender policy ({xθ}θ∈Θ, ϕ).

4.3 Security Games
We now again consider the security game setting. We have

shown in Section 3 that, when there are multiple follower types,
the polynomial-time solvability of BSGs does not extend to even
the simplest security game setting. Interestingly, it turns out that
when the leader has multiple types, the optimal leader strategy and
signaling scheme can be efficiently computed in fairly general set-
tings, as we will show in this section.

Continuing the setup in Section 3.4, we first introduce a few
more preliminaries. Note that θ is now the defender’s type. In secu-
rity games, any defender pure strategy, denoted as e, is a subset of
targets that are protected by this pure strategy. We will view e as a
binary vector from {0, 1}n with each entry specifying whether the
corresponding target is protected or not in this pure strategy. Let
E = {e1, ..., eL} be the set of all pure strategies. Therefore, the
convex hull of E

D = Conv{e1, ..., eL} (6)

corresponds to the set of all mixed strategies, where a mixed strat-
egy is summarized by the marginal coverage probabilities of each
target. In security games, L is usually exponentially large in the
natural representation, but D usually has compact representations,
and moreover, both the defender’s and attacker’s utilities can be
compactly represented using marginal probabilities. For example,
with k identical unconstrained defending resources and n targets,
L = Ckn = O(nk), the number of subsets of cardinality k, how-
ever D has a compact representation {x ∈ Rn :

∑
j xj = k; xj ∈

[0, 1] ∀j}. But in many cases, security resources have scheduling
constraints andD becomes more complicated. It can be shown that
if the defender best response problem can be solved in polynomial
time, then the Strong Stackelberg equilibrium can also be computed
in polynomial time [13, 26]. We now establish an analogous result
for BSG with signaling.

THEOREM 4.2. The optimal defender policy can be computed
in poly(n, |Θ|) time if the defender’s best response problem (i.e.,
defender oracle) admits a poly(n) time algorithm.

PROOF. First, observe that LP (5) does not obviously extend to
security game settings because the number of leader pure strategies

7Interestingly, when |Θ| = 1, the game degenerates to a Stack-
elberg game without uncertainty of player types, and LP (5) de-
generates to a linear program that computes the Strong Stackelberg
equilibrium [4].
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Figure 4: Simulation results showing the effect of varying number of actions, n, and number of types, |θ|, on the runtime and utility
of the three different models in the case of multiple follower types.

is exponentially large here and so is the LP formulation. There-
fore, like classic security game algorithms, it is crucial to exploit
a compact representation of the leader’s policy space. For this, we
need an equivalent but slightly different view of the leader policy.
That is, the leader policy can be equivalently viewed as follows: the
leader observes her type θ and then randomly chooses a signal σj
(occurring with probability

∑m
i=1 p

θ
ij in LP (5)), and finally picks

a mixed strategy that depends on both θ and σj (i.e., the vector
(pθ1j , p

θ
2j , ..., p

θ
mj) normalized by the factor

∑m
i=1 p

θ
ij in LP (5)).

The different view of leader policy above allows us to write a
quadratic program for computing the optimal leader policy. In par-
ticular, let pθj be the probability that the leader sends signal j con-
ditioned on the realized leader type θ, and let xθj be the leader’s
(marginal) mixed strategy conditioned on observing θ and sending
signal σj . Then, upon receiving signal σj , a rational Bayesian at-
tacker will updates his belief, and compute the expected utility for
attacking target j′ as∑

θ

(
λθp

θ
j

αj
·
[
xθj (j

′)Uac (j′|θ) +
(

1− xθj (j
′)
)
Uau (j′|θ)

])
(7)

where the normalization factor αj =
∑
θ λθp

θ
j is the probability of

sending signal σj . Define AttU(j, j′) to be the attacker utility by
attacking target j′ conditioned on receiving signal σj , multiplied
by the probability αj of receiving signal j. Formally,

AttU(j, j′)
= αj × Equation (7)
=

∑
θ

(
λθp

θ
jx

θ
j (j
′)Uac (j′|θ) +

[
λθp

θ
j − λθpθjxθj (j′)

]
Uau (j′|θ)

)
Similarly, we can also define DefU(j, j′), the leader’s expected
utility of sending signal σj with target j′ being attacked, scaled
by the probability of sending σj . The attacker’s incentive com-
patibility constraints are then AttU(j, j) ≥ AttU(j, j′) for any
j′ 6= j. Then the leader’s problem can be expressed as the
following quadratic program with variables {xθj}j∈[n],θ∈Θ and
{pθj}j∈[n],θ∈Θ.

maximize
∑
j DefU(j, j)

subject to AttU(j, j) ≥ AttU(j, j′), for j 6= j′.∑
j p

θ
j = 1, for θ ∈ Θ.

xθj ∈ D, for j, θ.
pθj ≥ 0, for j, θ.

(8)

The optimization program (8) is quadratic because AttU(j, j′)
and DefU(j, j′) are quadratic in the variables. Notably, these two
functions are linear in pθj and the term pθjx

θ
j . Therefore, we de-

fine variables yθj = pθjx
θ
j ∈ Rn. Then, both AttU(j, j′) and

DefU(j, j′) are linear in pθj and yθj . The only problematic con-
straint in program (8) is xθj ∈ D, which now becomes yθj ∈ pθjD

where both pθj and yθj are variables. Here pD denotes the polytope
{px : x ∈ D} for any given p. It turns out that this is still a convex
constraint, and behaves nicely as long as the polytope D behaves
nicely.

LEMMA 4.3. Let D ⊆ Rn be any bounded convex set. Then
the following hold:

(i) The extended set D̃ = {(x, p) : x ∈ pD, p ≥ 0} is convex.
(ii) If D is a polytope expressed by constraints Ax ≤ b, then D̃

is also a polytope, given by {(x, p) : Ax ≤ pb, p ≥ 0};
(iii) If D admits a poly(n) time separation oracle, so does D̃.8

The proof of Lemma 4.3 is standard, and is deferred to the ap-
pendix. We note that the restriction thatD is bounded is important,
otherwise some conclusions do not hold, e.g., Property 2. Fortu-
nately, the polytope D of mixed strategies is bounded. Therefore,
using Lemma 4.3, we can rewrite Quadratic Program (8) as the fol-
lowing linear program.

maximize
∑
j DefU(j, j)

subject to AttU(j, j) ≥ AttU(j, j′), for j 6= j′.∑
j p

θ
j = 1, for θ ∈ Θ.

(yθj , p
θ
j ) ∈ D̃, for j, θ.

pθj ≥ 0, for j, θ.

(9)

Program (9) is linear becauseAttU(j, j′) andDefU(j, j) are lin-
ear in pθj and yθj , and moreover, (yθj , p

θ
j ) ∈ D̃ are essentially linear

constraints due to Lemma 4.3 and the fact that D is a polytope in
security games. Furthermore, LP (9) has a compact representation
as long as the polytope of realizable mixed strategies D has one.
In this case, LP (9) can be solved explicitly. More generally, by
standard techniques from convex programing, we can show that
the separation oracle for D easily reduces to the defender’s best re-
sponse problem. Thus if the defender oracle admits a poly(n) time
algorithm, then a separation oracle for D can be found in poly(n)

time. By Lemma 4.3, D̃ then admits a poly(n) time separation or-
acle, so LP (9) can solved in poly(n, |Θ|) time. The proof is not
particularly insightful and a similar argument can be found in [26].
So we omit the details here.

4.4 Relation to Other Models
We note that our model in this section is related to several mod-

els from the literature on both information economics and secu-
rity games. In particular, when the leader does not have actions
8A separation oracle for a convex set D ⊆ Rn is an algorithm,
which, given any x0 ∈ Rn, either correctly asserts x0 ∈ D or
asserts x0 6∈ D and find a hyperplane a ·x = b separating x0 from
D in the following sense: a ·x0 > b but a ·x ≤ b for any x ∈ D. It
is well-known that the convex program max a ·x subject to x ∈ D
can be solved in poly(n) time for any a ∈ Rn if D has a poly(n)
time separation oracle [11].



and only privately observes her type, our model degenerates to the
Bayesian Persuasion (BP) model of [15]. The BP model is a two-
player game played between a sender (leader in our case) and a re-
ceiver (follower in our case). The receiver must take one of a num-
ber of actions with a-priori unknown payoff, and the sender has no
actions but possesses additional information regarding the payoff
of various receiver actions (i.e., the leader observes her type). The
BP model studies how the sender can signal her additional informa-
tion to persuade the receiver to take an action that is more favorable
to the sender. Variants of the BP model have been applied to var-
ied domains including auctions, advertising, voting, multi-armed
bandits, medical research and financial regulation. For additional
references, see [7]. Our model generalizes the BP model to the case
where sender has both actions and additional private information,
and our results show that this generalized model can be solved in
fairly general settings.

The security game setting in this section also relates to the model
of Rabinovich et al. [23]. Rabinovich et al. considered a similar
security setting where the defender can partially signal her strategy
and extra knowledge about targets’ states to the attacker in order to
achieve better defender utility. This is essentially a BSG with mul-
tiple leader types and a single follower type. Rabinovich et al. [23]
were able to efficiently solve for the case with unconstrained iden-
tical security resources. Our Theorem 4.2 shows that this model
can actually be efficiently solved in much more general security
settings allowing complicated real-world scheduling constraints, as
long as the defender oracle problem can be solved efficiently.

5. SIMULATIONS
We will mainly present the comparison of the models discussed

in Section 3 in terms of both the leader’s optimal utility and the
runtime required to compute the leader’s optimal policy. We focus
primarily on the setting with one leader type and multiple follower
types, for two reasons. First, this is the case in which it is NP-hard
to compute the optimal leader strategy without allowing the leader
to signal (i.e., to compute the BSSE strategy), while our models of
signaling permit a polynomial time solution. Second, some inter-
esting phenomena in our simulations for the case of multiple leader
types also show up in the case of multiple follower types.
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Figure 5: Extra utility gained by
the leader from signaling.

We generate random
instances using a modi-
fication of the covariant
game model [19]. In
particular, for given val-
ues of m, n, and Θ,
we independently set aθij
equal to a random integer
in the range [−5, 5] for
each i, j, θ. Probabilities
{λθ}θ∈Θ were generated
randomly. For some
value of α ∈ [0, 1], we
then set B = α(B′) +
(1− α)(−A), where B′ is a random matrix generated in the same
fashion asA. So in the case that α = 0 the game is zero-sum, while
α = 1 means independent and uniform random leader and follower
payoffs. For every set of parameter values, we averaged over 50 in-
stances generated in this manner to obtain the utility/runtime values
we report.

We first consider the value of signaling for different values of
α chosen from the set {0, 0.1, 0.2, ..., 1}. For these simulations,
we fixed m = n = 10 and |Θ| = 5. Figure 5 shows the abso-
lute increase in leader utility from signaling (both with and without

the type-reporting IC constraints), compared with the utility from
BSSE (the y = 0 baseline). Note that when α = 0 there is no
gain from signaling, from Proposition 3.3. Interestingly, the gain
from signaling is non-monotone, peaking at around α = 0.7. Intu-
itively, large α means low correlation between the payoff matrices
of the leader and follower, therefore there is a high probability that
some entries will induce high payoff to both players. The leader
can therefore extract high utility from commitment alone, thus de-
rives little gain from signaling. However, as we decrease α and
the game becomes more competitive, commitment alone is not as
powerful for the leader and she has more to gain from being able to
signal.

We next investigate the relation between the size of the BSG and
the leader’s utility, as well as runtime, for the three different mod-
els. In Figures 4(a) and 4(b), we hold the number of follower types
constant (|Θ| = 5) and vary m = n between 1 and 15. In Fig-
ures 4(c) and 4(d) we fix m = n = 5 and vary |Θ| between 1 and
15. In all cases we set α = 0.5 for generating random instances.

Not surprisingly, allowing signaling (both with and without the
IC constraints) provides a significant speed-up over computing the
BSSE.9 On the other hand, the additional constraints in the model
with IC constraints also increase the running time over the model
without those constraints. Indeed, the time to compute the leader’s
optimal policy without the IC constraints appears as a flat line in
Figures 4(a) and 4(c).

In both figures of leader utility, the differences of the leader’s
utility among the models are as indicated by Proposition 3.5. Ob-
serve that in all models the leader’s utility increases with the num-
ber of actions, but decreases with the number of types. One expla-
nation is that the former effect is due to the increased probability
that the payoff matrices for a given follower type contain ‘coop-
erative’ entries where both players achieve high utility. However,
as the number of follower types increases, it becomes less likely
that the leader’s strategy (which does not depend on the follower
type) can “cooperate" with a majority of follower types simultane-
ously. Thus there is an increased chance that the leader’s strategy
results in low utilities when playing against a reasonable fraction
of follower types, which accounts for the latter effect.

In the case of multiple leader types, allowing the leader to signal
actually results in a small computational speed up compared to the
case without signaling. We hypothesize that this is because we only
need to solve one LP to compute the optimal policy, rather than the
multiple LPs required to solve without signaling [5]. Unsurpris-
ingly, we also see an increase in the leader’s utility. The utility
trends are similar to the case of multiple follower types, so we do
not present them in detail.

6. CONCLUSIONS AND DISCUSSIONS
In this paper, we studied the effect of signaling in Bayesian

Stackelberg games. We show that the leader’s power of commit-
ment to a signaling scheme not only achieves higher utility, but also
computational speed-ups. Some of the polynomial-time solvability
results extend to security games, an important application domain
of Stackelberg games, while others cease to hold. There are many
interesting directions for future work. What if different follower
types can share information with each other? For a Bayesian leader,
what if her signaling scheme cannot be correlated with her mixed
strategy, but only carries information about her type? Can we ap-
ply these ideas to other domains, e.g., mechanism design where the
mechanism designer implicitly serves as the leader?

9To compute the BSSE, we implement the state-of-art algorithm
DOBBS, a mixed integer linear program as formulated in [21].
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APPENDIX
A. PROOF OF PROPOSITION 3.3

First, notice that Usig(G) ≥ UBSSE(G) for any BSG G (not
necessarily zero-sum). This is because the leader policy of play-
ing the BSSE leader mixed strategy and sending only one signal
to each attacker type degenerates to the BSSE. We now show that
Usig(G) ≤ UBSSE(G). Let (x∗, p) be the optimal leader pol-
icy computed by LP (2). Note that, if the leader plays the optimal
leader policy (x∗, p), but the follower type θ “irrationally" ignores
any signal and simply reacts to x∗ by taking the best response (to
x∗) action j∗, then, the follower of type θ gets utility

∑
i x
∗
i b
θ
ij∗ .

We claim that this utility is less than the utility of best responding
to each signal separately, as shown below∑

j

∑
i

pθijb
θ
ij ≥

∑
j

∑
i

pθijb
θ
ij∗ =

∑
i

x∗i b
θ
ij∗

where the inequality is due to second set of constraints in LP (2)
and the equality is due to the first set of constraints in LP (2).
Since this is a zero-sum game, the leader will be better off if the
follower of type θ ignores signals. Let U be the defender utility
when all the attacker types best respond to x∗ by ignoring signals,
then U ≥ Usig(G). However, U is simply the defender utility
in this BSG by committing to the mixed strategy x∗ without any
signaling, therefore is upper bounded by UBSSE(G). As a result,
UBSSE(G) ≥ U ≥ Usig(G), as desired.

B. PROOF OF PROPOSITION 3.6
This is a slight modification from a proof of the hardness of

Bayesian Stackelberg games (Theorem 2 in [17]). We provide it
only for completeness.

The reduction is from 3-SAT. Given an instance of 3-SAT with
n variables and m clauses, we create a security game with 2n + 2
targets and n resources. For each variable, there is a target corre-
sponding to taht variable and its negation (call these variable tar-
gets), as well as a punishment and a reward target.

There are m+ 3n types of attacker. m of these are clause types,
one per clause. Each of these types are interested in attacking
all targets corresponding to literals appearing in the corresponding
clause, or the reward target. For any literal contained in the clause,
this type gets -1 payoff for attacking when the target is covered and
0 when it is uncovered. Any clause type attacker gets 0 payoff for
attacking the punishment target, whether or not it is covered. Note
that if a clause type believes that at least one of the literal targets is
covered with probability 1, then they will attack that target (break-
ing ties favorably). Otherwise, they attack the punishment target.

There is one pair type for each variable. These types are not in-
terested in any literal target that does not correspond to the relevant
variable, or the reward target. For the two literal targets they are
interested in, they get -1 payoff for attacking a covered target and
0 for an uncovered target. They get 0 for attacking the punishment
target. Again, a pair type target will only not attack the punish-
ment target if they believe that both literal targets are covered with
non-zero probability.

Lastly there are 2n counting types, one per literal. Each of these
types is not interested in any literal target other than the one cor-
responding to them, or the punishment node. If they attack the
relevant literal node and it is covered they get 0 payoff, and if it is
uncovered they get 1. They get 0 payoff for attacking the reward
target, regardless of whether it is covered. Note that each of these
types attacks the reward target if they believe that the literal target
is covered with probability 1.

The defender gets 0 payoff whenever a literal target is attacked,
regardless of whether it is covered and -1 payoff whenever the pun-
ishment target is attacked. If any attacker attacks the reward target
the defender gets payoff (note that the only attacker types that will
ever attack the reward target are the counting types).

Each type occurs with equal probability.
We show that the defender can obtain a utility of n

m+3n
if and

only if the instance of 3-SAT is satisfiable.
If the instance is satisfiable, then we simply cover the vari-

able targets corresponding to a satisfying assignment, and signal
as such. Then all clauses are satisfied, so no clause type attacks
the punishment node, no variable has both its positive and negative
literals covered with positive probability, and n counting types are
sure that their literal is covered, so they attack the reward node.
This results in an expected utility of n

m+3n
for the defender.

Now suppose the instance of 3-SAT is not satisfiable. Note that
whenever there is any uncertainty for the attacker they take an un-
desirable action, therefore the defender optimally signals truthfully
about their chosen action. Since the instance is unsatisfiable, for
any allocation of resources either a clause type or pair type will be
incentivized to attack the punishment target. The defender can get
payoff 1 at most n

m+3n
of the time (from exactly n counting types,

as the defender can cover only n variable targets at a time), and
gets -1 payoff from the pair/clause type that attacks the punishment
target. Therefore the defender gets less than n

m+3n
expected utility.

C. PROOF OF PROPOSITION 3.7
For convenience, let target 0 denote the common coverage-

invariant target. By assumption, let iθ denote the only type-specific
target for the attacker of type θ. Notice that, our signaling scheme
only needs two signals for the attacker of type θ, recommending
either target iθ or target 0 for attack, since he is not interested in
other targets. Therefore, for each attacker type θ, we define four
variables: pθc,j [pθu,j] is the probability that type θ’s specific tar-
get iθ is covered [uncovered] and action j is recommended to the
attacker, where j ∈ {iθ, 0} is either to attack iθ , or stay home.
Notice that, we can define these variables because our signaling
scheme for type θ only depends on the coverage status of target iθ
as the utility of the common target 0 is coverage-invariant. This
is crucial, since otherwise, the optimal signaling scheme may de-
pend on all the targets that type θ is interested, and this makes the
problem much harder (as shown in Proposition 3.8). The following
linear program, with variables pθc,j and x, computes the optimal
defender utility.

maximize
∑
θ∈Θ λθ

∑
s∈{c,u} p

θ
s,iθ

Udx (iθ; θ)

subject to
∑
j∈{0,iθ}

pθc,j = xiθ , for θ ∈ Θ.∑
j∈{0,iθ}

pθu,j = 1− xiθ , for θ ∈ Θ.∑
s∈{c,u} p

θ
s,jU

a
s (j; θ) ≥∑

s∈{c,u} p
θ
s,jU

a
s (j′; θ), for θ ∈ Θ.

x ∈ D
(10)

where: the first two constraints mean that the signaling scheme
should be consistent with the true marginal probability that i is cov-
ered (first constraint) or uncovered (second constraint). The third
constraint is the incentive compatibility constraint which guaran-
tees that the attacker prefers to follow the recommended action.
The last constraint ensures that the marginal distribution x is im-
plementable ( D is the set of all implementable marginals. See
Section 4.3 for more information.)

D. PROOF OF PROPOSITION 3.8



D.1 LP Formulation of the Problem and its
Dual

Using similar notations as Section 4.3, we equivalently regard
each pure strategy as a vector e ∈ {0, 1}n, and E is the set of all
pure strategies. We consider the case where the defender does not
have any scheduling constraints, i.e., e is any vector with at most k
1’s, and show that the defender oracle in this basic setting is already
NP-hard. To describe a mixed strategy, let pe be the probability of
taking pure strategy e. Then

x = E(e) =
∑
e∈S

e× pe (11)

is the marginal coverage probability corresponding to this pure
strategy {pe}e∈S . Notice that x ∈ Rn.

By Observation 3.1, n signals are need for each attacker type in
the optimal scheme. Therefore, let pθs,i be the probability that pure
strategy s is taken and the attacker of type θ is recommended to
take action i. Then αθi =

∑
e∈E p

θ
e,i is the probability that attacker

of type θ is recommended to take action i, while

xθi =
∑
e∈E

e× pθe,i

is the corresponding posterior belief (absent by a normalization fac-
tor 1/αθi ) of marginal coverage when the attacker of type θ is rec-
ommended action i. Then the following optimization formulation
computes the defender’s optimal mixed strategy as well as signal-
ing scheme.10

maximize
∑
θ,i λθ

[
xθiiU

c
d(i; θ) + (αθi − xθii)Uud (i; θ)

]
subject to xθiiU

c
a(i, θ) + (αθi − xθii)Uua (i, θ) ≥
xθijU

c
a(j, θ) + (αθi − xθij)Uua (j, θ), for i, j, θ.

αθi =
∑
e∈E p

θ
e,i, for i, θ.∑

e∈E e× p
θ
e,i = xθi , for i, θ.∑n

i=1 p
θ
e,i = pe, for e, θ.∑

s∈E pe = 1

pθe,i ≥ 0, pe ≥ 0, for e, i, θ.
(12)

where xθi ∈ Rn, ps ∈ R, pθs,i ∈ R are variables.
We now take the dual of LP (12). Instead of providing the exact

dual program, we abstractly represent the dual by highlighting the
non-trivial part, as follows:

minimize γ
subject to poly(n, |Θ|) linear constraints on yθi , β

θ
i

−βθi + e · yθi + qθe ≥ 0, for i, e, θ.∑
θ −q

θ
e + γ ≥ 0, for e.

(13)
where βθi , q

θ
e , γ ∈ R, yθi ∈ Rn are variables. We now analyze

the dual program (13). Notice that the first (implicitly described)
constraint does not depend on γ, qθe . So the last constraint, together
with the “min" objective, yields that γ = maxe∈E

∑
θ q

θ
e at opti-

mality. The middle constraint, together with the “min" objective,
yields that qθe = maxi[β

θ
i − e · yθi ] at optimality. As a result, the

dual program can be re-written in the following form:

max
e∈E

[∑
θ

max
i

(βθi − e · yθi )

]
s.t. poly(n, |Θ|) linear constraints on yθi , β

θ
i .

10We only consider the case with no IC constraints for incentivizing
attacker’s type report. Adding IC constraint will result in the same
defender oracle, thus is omitted here.

Notice that, this is still a convex program – the objective can be
viewed as maximizing a convex function.

D.2 The Defender Oracle
The defender oracle problem is precisely to evaluate the function

f(yθi , β
θ
i ) = max

e∈E

[∑
θ

max
i

(βθi − e · yθi )

]
(14)

for any given input yθi , β
θ
i . When the attacker of type θ is only inter-

ested in a small number of targets, say a subset S of targets. Then in
LP (12), the third constraint on xθi ∈ Rn only needs to be restricted
to the targets in S, since the attacker of type θ does not care about
the coverage of other targets at all. That is, there is no constraints
for xθi for all i 6∈ S; Moreover, for those i ∈ S, the constraint on
xθi can be restricted to only the entries in S. This simplification is
reflected in the defender oracle problem in the following way: the
input yθi are non-zeros vectors only for those i ∈ S; moreover, the
non-zero yθi only has non-zeros at those entries corresponding to
S.

D.3 Hardness of the Defender Oracle
We now prove that the defender oracle problem is NP-hard, even

when each attacker type θ is only interested in 2 targets. In other
words, we prove that evaluating function f(yθi , β

θ
i ) is NP-hard,

even when only two yθi ’s are non-zero vectors for each θ and each
of these two yθi ’s only has two non-zero entries.

We reduce from max-cut. Given any graph G = (V,Θ) with
node set V and edge set Θ. Construct a security game with V as
targets and Θ as attacker types. The attacker type θ = (i, j) is
interested in only targets i, j. For any type θ = (i, j), define yθi as
follows: yθii = 1, yθij = −1 and yθik = 0 for any k 6= i, j; define
yej as follows: yθji = −1, yθjj = 1 and yθjk = 0 for any k 6= i, j.
Let βθi = 0 for any i, θ. We will think of each pure strategy e as a
cut of size k, with all value-1 nodes on one side and value-0 nodes
on another side. Let

c(e) =
∑
θ∈Θ

max
k

(βθk − e · yθk) =
∑

θ=(i,j)∈Θ

max(−e · yθi ,−e · yθj ).

Note that max(−e · yθi ,−e · yθj ) = 1 if and only if edge θ is cut by
strategy e (in which case e · yθi , e · yθj equals 1,−1 respectively).
Otherwise max(−e · yθi ,−e · yθj ) = 0. Therefore, c(e) equals pre-
cisely the cut size induced by e. Note that evaluating function f
defined in Equation (14) is to maximize c(e) over e ∈ E, which is
precisely to compute the Max k-Cut, a well-known NP-hard prob-
lem. Therefore the defender oracle is NP-hard, even when each
attacker type is only interested in two targets.

E. PROOF OF LEMMA 4.3
Part 1: This is standard, and can be found, e.g., in [2]. We

provide a proof for completeness. Consider any two elements
(x, p) and (y, q) from D̃. So there exists a,b ∈ D such that
x = p · a and y = q · b. To prove the convexity, we need to
show α · (x, p) +β · (y, q) ∈ D̃ for any α ∈ (0, 1) and α+β = 1.
If p = q = 0, this is obvious; Otherwise, we have

α · (x, p) + β · (y, q) = α(p · a, p) + β(q · b, q)

=
(

[αp+ βq] · αp · a + βq · b
αp+ βq

, αp+ βq
)

Notice that αp·a+βq·b
αp+βq

∈ D due to the convexity of D, therefore

α · (x, p) + β · (y, q) ∈ D̃. So D̃ is convex.



Part 2: First, it is easy to see that any element from D̃ satisfies
Ax ≤ pb and p ≥ 0. We prove the other direction. Namely, for
any (x, p) satisfies Ax ≤ pb and p ≥ 0, (x, p) ∈ D̃. It is easy to
see that this is true for p > 0 since x/p ∈ D. The non-trivial part
is when p = 0, in which case (x, p) ∈ D̃ if and only if x = 0. We
need to prove the only x satisfyingAx ≤ 0 is the all-zero vector 0.
Here we need the condition thatD is bounded. If (by contradiction)
there exists x0 6= 0 satisfying Ax0 ≤ 0, then for any x ∈ D, we
must have x + αx0 ∈ D for any α > 0, which contradicts the fact
that D is bounded.

Part 3: If D has a separation oracle O, then the following is a
separation oracle for D̃. Given arbitrary (x0, p0) ∈ Rn+1,

case 1: If p0 < 0, return “no” and separation hyperplane p0 = 0;
case 2: If p0 > 0, first check whether x0/p0 ∈ D. If this is true,

return “yes"; otherwise, find a violated constraint, using oracle O,
such that aT · x0

p0
> b but aT · x′ ≤ b for any x′ ∈ D. We claim

that aT · x − bp = 0 is a hyperplane separating (x0, p0) from D̃.
In particular, for any (x, p) ∈ D̃ with p > 0, ∃x′ ∈ D such that
x/p = x′. Note that aT ·x′ ≤ b since x′ ∈ D, so aT ·x ≤ pb (also
holds when p = 0 in which case x = 0) . However aT ·x0 > p0b.
Therefore, aT · x− pb = 0 is a separation hyperplane.

case 3: If p0 = 0, return “yes" if x0 = 0. Otherwise, re-
turn “no", and find a separation hyperplane as follows. Since D
is bounded, we can find some L0 > 0 large enough such that
y0 = L0x0 6∈ conv(D, 0), where conv(D, 0) is the convex hull
of D and the origin 0 (thus contains D), and is introduced for tech-
nical convenience. Let a · y = b be a hyperplane separating y0

from conv(D, 0). That is a · y0 > b and a · y ≤ b for any
y ∈ conv(D, 0), in particular, for any y ∈ D. Similarly to the
argument in case 2, we know that a · x ≤ pb for any (x, p) ∈ D̃.
Note that, since 0 ∈ conv(D, 0), we have b ≥ a · 0 = 0 is non-
negative. As a result, a · Lx0 = L

L0
a · y0 > b for any L ≥ L0.

That is, a · x0 >
1
L
b for any L ≥ L0. Therefore, we must have

a · x0 ≥ 0 = p0b since p0 = 0. As a result, the hyperplane
a · x = pb separates (x0, p0) from D̃.


