
3

Dynamic Proportional Sharing: A Game-Theoretic Approach

RUPERT FREEMAN∗, Duke University
SEYED MAJID ZAHEDI∗, Duke University
VINCENT CONITZER, Duke University
BENJAMIN C LEE, Duke University

Sharing computational resources amortizes cost and improves utilization and efficiency. When agents pool

their resources together, each becomes entitled to a portion of the shared pool. Static allocations in each

round can guarantee entitlements and are strategy-proof, but efficiency suffers because allocations do not

reflect variations in agents’ demands for resources across rounds. Dynamic allocation mechanisms assign

resources to agents across multiple rounds while guaranteeing agents their entitlements. Designing dynamic

mechanisms is challenging, however, when agents are strategic and can benefit by misreporting their demands

for resources.

In this paper, we show that dynamic allocation mechanisms based on max-min fail to guarantee entitlements,

strategy-proofness or both. We propose the flexible lending (FL) mechanism and show that it satisfies strategy-

proofness and guarantees at least half of the utility from static allocations while providing an asymptotic

efficiency guarantee. Our simulations with real and synthetic data show that the performance of the flexible

lending mechanism is comparable to that of state-of-the-art mechanisms, providing agents with at least 0.98x,

and on average 15x, of their utility from static allocations. Finally, we propose the T -period mechanism and

prove that it satisfies strategy-proofness and guarantees entitlements.
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1 INTRODUCTION
Shared systems are defined by the competition for resources between strategic agents. In this paper,

we consider a community of agents who share a non-profit system and its capital and operating costs.

Sharing increases system utilization and amortizes its costs over more computation [10]. Examples

include supercomputers for scientific computing [25], datacenters for Internet services [12, 32],
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and clusters for academic research [4, 31]. Note, however, that our focus excludes systems in which

agents explicitly pay for time on shared computational resources (i.e., infrastructure-as-a-service).

Shared systems ensure fairness by allocating resources proportionally to entitlements, which

specify each agent’s share of system resources relative to others [22, 24, 33]. Entitlements are

dictated by exogenous factors such as agents’ contributions to the shared system or priorities

within the organization. A dynamic allocation mechanism should ensure agents’ entitlements

across time while assigning resources to computational stages that benefit most.

Guaranteeing entitlements and redistributing under-utilized resources are difficult when agents

are strategic. The allocation mechanism does not know and must extract agents’ utilities, which

are private information. Strategic agents act selfishly to pursue their own objectives. Agents will

determine whether misreporting demands can improve their performance even at the expense of

others in the system. For example, an agent is likely to over-report her demand in the current time

period to obtain more resources, unless doing so leads to a reduction in the resources allocated to

her in later periods.

We seek allocation mechanisms that satisfy strategy-proofness (SP), which ensures that no

agent benefits by misreporting her demand for resources. Strategy-proofness is a key feature

contributing to efficiency as it allows the mechanism to optimize system performance according to

agents’ true utilities. Without SP, agents’ reports may not represent their true utility and allocating

based on reported demands may not produce any meaningful performance guarantee. Moreover,

strategy-proof mechanisms reduce the cognitive load on agents by eliminating the need to optimally

construct resource demands or preemptively respond to misreports by other agents in the system.

Strategy-proofness is complemented by sharing incentives (SI), which ensures that agents perform

at least as well as they would have by not participating in the allocation mechanism (i.e., using

their own resources as a smaller, private system). With sharing incentives, agents would willingly

federate their resources and manage them according to the commonly agreed upon policy. A

mechanism that statically enforces entitlements in every time period satisfies strategy-proofness

and sharing incentives but its efficiency is poor and fails to realize the advantages of dynamic

sharing across time.

In this paper, we focus on three fundamental game-theoretic desiderata: strategy-proofness,

sharing incentives, and efficiency. We consider agents who derive high utility per unit of resource

up until some amount of resource allocation (i.e., their demand) and derive low utility beyond

that allocation. The high-low formulation is appropriate for varied resources such as processor

cores, cache and memory capacity, or virtual machines in a datacenter. For example, an agent could

derive high utility when additional processors permit her to dequeue more tasks from a highly

critical job. Once the job’s queue is empty, she derives low utility from using additional processors

to replicate tasks, which guards against stragglers or failures. In another example, an agent that

is allocated more power can turn on more processors, each of which provides high utility from

task parallelism. Once the agent exhausts her job’s parallelism, it can use additional power to boost

processor voltage and frequency for lower, non-zero utility.

We propose allocation mechanisms for dynamic proportional sharing to address limitations in

existing approaches. We begin by proving that policies used in state-of-the-art schedulers [2, 3, 5]

fail to satisfy SP or SI. We then propose two alternative mechanisms. First, as our main contribution,

we propose the flexible lending mechanism to satisfy SP, guarantee at least 50% of SI performance,

and provide an asymptotic efficiency guarantee. The mechanism uses tokens to enable these

theoretical guarantees. In practice, our simulations show that performance is comparable to that

of state-of-the-art mechanisms and achieves 98% of SI performance, much better than the lower

bound. Second, for situations where SI is a hard constraint, we propose the T -period mechanism to

satisfy SP and SI while still outperforming static allocations.
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Fig. 1. Users’ Utility. A user derives high utility from resources up to her demand and derives low utility from
resources beyond her demand.

2 PRELIMINARIES
Consider a dynamic system with n agents and R discrete rounds. Agent i contributes ei > 0 units

of a resource at each round, which we refer to as her endowment. In other words, ei is agent i’s
contribution to the federated system, which does not vary over time. Let [n] = {1, . . . ,n} and
E =

∑
i ∈[n]

ei denote the total number of units to be allocated at each round. At round r , agent i has
a true demand of di,r ≥ 0 units and reports a demand of d ′i,r ≥ 0. Let d′i = (d ′i,1, . . . ,d

′
i,R ) denote

the vector of agent i’s reports, and d′
−i denote the reports of all agents other than i .

A dynamic allocation mechanism M assigns each agent an allocation aMi,r (d
′
i , d
′
−i ) using only

information from the first r entries in the demand vectors. We will often write simply ai,r when the

exact mechanism and the demands are clear from context. Let aMi (d′i , d
′
−i ), often simply ai, denote

the vector of agent i’s allocations. Agents have high (H ) utility per resource up to their demand,

and low (L) utility per resource that exceeds their demand. Formally, the utility of agent i at round
r for ai,r units is denoted by ui,r (ai,r ) and modeled as the following.

ui,r (ai,r ) =



ai,rH if ai,r ≤ di,r ,

di,rH + (ai,r − di,r )L if ai,r > di,r .

Figure 1 shows ui,r for user i with demand di,r at round r . For simplicity, we assume H and L are

the same for all agents, but all our results extend to the case where agents have different values of

H and L (with the exception of §5.5).

While resources and demands are discrete, we allow the allocations ai,r to be real-valued. Real-

valued allocations can be thought of as probabilistic—the realized allocation is a random allocation

where agent i is allocated ai,r resources in expectation, which is always possible as a result of the

Birkhoff-von Neumann theorem [11]. Agent i’s overall utility after R rounds for allocation ai is
calculated additively as follows.

Ui,R (ai) =
R∑
r=1

ui,r (ai,r ).

We do not consider discounting for simplicity of presentation, but our mechanisms readily extend

to the case where agents discount their utilities over time.

In this paper, we focus on three main properties: strategy-proofness, sharing incentives, and

efficiency. First, strategy-proofness says that agents never benefit from lying about their demands.

In other words, agent i’s utility decreases if she reports d′i , di.

Definition 1. MechanismM satisfies strategy-proofness (SP) if

Ui,R (aMi (di, d′−i)) ≥ Ui,R (aMi (d′i , d
′
−i)) ∀i,∀R,∀di,∀d′i , and ∀d

′
−i.
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Next, sharing incentives says that by participating in the mechanism, agents receive at least the

utility they would have received by not participating.

Definition 2. MechanismM satisfies sharing incentives (SI) if

Ui,R (aMi (di, d′−i)) ≥ Ui,R (ei) ∀i,∀R,∀di, and ∀d′−i.

We also define a relaxed notion of α-sharing incentives, which says that every agent gets at least

an α fraction of the utility that she would have received without taking part in the mechanism.

Note that 1-SI is equivalent to SI.

Definition 3. MechanismM satisfies α-SI if

Ui,R (aMi (di, d′−i)) ≥ α Ui,R (ei) ∀i,∀R,∀di, and ∀d′−i.

Finally, efficiency says that all resources should be allocated, and an agent with L valuation

should never receive a resource while there are agents with H valuation for that resource.

Definition 4. MechanismM satisfies efficiency if∑
i ∈[n]

aMi,r = E,

and if aMi,r > d ′i,r for some agent i and round r , then aMj,r ≥ d ′j,r for all agents.

Note that efficiency is relative to the agents’ reports, not their actual valuations, which are hidden

from the mechanism. Therefore, in situations where agents lie about their valuations, it is possible

that even an efficient mechanism allocates a unit inefficiently with respect to the actual valuations.

With this in mind, there is little value in a mechanism that is efficient but not SP. Similarly, if

a mechanism does not satisfy SI, then agents may not want to participate in it. So an efficient

mechanism that does not satisfy SI may not actually exhibit efficiency gains in practice because

agents choose not to participate. In some contexts, SI may not be of concern because agents are

forced to participate or are willing to risk participation if gains are likely large and losses are likely

small.

For readability, some proofs are omitted and appear in the appendix.

3 EXISTING MECHANISMS
In this section, we focus on the (weighted) max-min fairness policy, which is one of the most widely

used policies in computing systems. It is deployed in many state-of-the-art datacenter schedulers

such as the Hadoop Fair Scheduler [3], Hadoop Capacity Scheduler [2] and Spark Dynamic Allocator

[5]. And it has been extensively studied in the literature [16, 17, 29].

A dynamic allocation mechanism could deploy the max-min policy for two different objectives:

maximizing the minimum accumulated allocations up to a round, or maximizing the minimum

allocation at each round, independently of previous rounds. We call the first mechanism Dynamic
Max-Min (DMM) and the second mechanism Static Max-Min (SMM). First, at each round r , DMM

selects the allocation that maximizes mini
∑r

r ′=1
ai,r ′/ei , the minimum weighted cumulative allo-

cation; subject to this, it maximizes the second lowest weighted cumulative allocation, and so on.

This maximization is subject to the constraint that no resource is allocated to an agent with low

valuation as long as there are agents with high valuation.

Second, at each round r , SMM selects the allocation that maximizes mini ai,r /ei , the minimum

weighted allocation at that round; subject to this, it maximizes the second lowest weighted allocation,

and so on. This maximization is also subject to the constraint that no resource is allocated to an

agent with low valuation as long as there are agents with high valuation. Under SMM, agents are
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guaranteed to receive their demands as long as they are less than or equal to their endowment.

Agents with demands higher than their endowments receive extra resources from agents with

demands lower than their endowments. Unlike DMM, SMM allocates resources locally at round r ,
regardless of agents’ allocations prior to round r .

In the rest of this section, we study properties of these two mechanisms. In particular, we focus

on three properties: strategy-proofness, sharing incentives, and efficiency. We examine whether the

existing mechanisms satisfy these properties for the special case when L = 0 and for the general

case when L > 0.

3.1 Properties of Mechanisms for L = 0
When L = 0, one might think that agents do not have any incentive to misreport their demands.

However, we show that DMM fails to satisfy SI and SP.

Theorem 5. Dynamic max-min mechanism violates sharing incentives, even when L = 0.

Proof. Suppose that R = 10 and there are three agents, each with ei = 3. For all rounds r , 10,

the demands are d1,r = 1, d2,r = 2, and d3,r = 6. For rounds r = 1, . . . , 9, each agent is allocated

exactly her demand. After round 9, utilities for agents 1, 2 and 3 are 9H , 18H and 54H , respectively.

At round 10, demands are d1,10 = 9, d2,10 = 9, and d3,10 = 6. DMM allocates all 9 units to agent 1,

which maximizes the minimum weighted cumulative allocation. Consider agent 2. Under DMM,

agent 2’s allocation is a2,r = 2 for all r , 10 and a2,10 = 0. If she had not participated in the

mechanism, then she would have obtained the same utility in each round r , 10, but a strictly

higher utility in round r = 10. □

Theorem 6. Dynamic max-min mechanism violates strategy-proofness, even when L = 0 [7].

Proof. Consider three agents with equal endowmentsm1 =m2 =m3 = 1 sharing three units of

a resource for three rounds. The demand of agent 1 is 3 for all three rounds. Agent 2’s demand is 3

for rounds 1 and 3 and 0 for round 2. And agent 3 has a demand of 3 for round 2 and 0 for rounds 1

and 3. Agent 1 achieves utility of 3.375H by truthful reporting. If agent 1 misreports 0 for round 1,

her utility would increase to 3.75H . □

Since DMM does not satisfy SP, it cannot guarantee any meaningful notion of efficiency, as

explained in §2. Next, we show that SMM satisfies SI, SP, and efficiency.

Theorem 7. Static max-min mechanism satisfies strategy-proofness, sharing incentives, and effi-
ciency when L = 0.

Proof. We start by proving that SMM satisfies SP. Under SMM, allocations at round r are

independent of allocations at previous rounds. Suppose that agent i reports d ′i,r , di,r at round r .
Let a′i,r and ai,r denote i’s allocations at round r for reportingd

′
i,r anddi,r , respectively. If ai,r ≥ di,r ,

then i already receives her highest possible utility, di,rH (because L = 0), and she cannot benefit

from misreporting.

If ai,r < di,r , then for all j , i , we have: (1) aj,r ≤ dj,r and (2) ai,r /ei ≥ aj,r /ej . The former holds

by SMM’s definition. The latter holds because SMM maximizes the minimum weighted allocations

in a lexicographical order. If there is j with aj,r /ej > ai,r /ei , then SMM should decrease aj,r and
increase ai,r . Now, suppose for contradiction that a′i,r > ai,r . Since

∑
k a
′
k,r =

∑
k ak,r , there should

be an agent ℓ with a′
ℓ,r < aℓ,r ≤ dℓ,r . Therefore, we have:

a′ℓ,r /eℓ < aℓ,r /eℓ ≤ ai,r /ei < a′i,r /ei .
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This is a contradiction because SMM could improve its objective value by decreasing a′i,r and

increasing a′
ℓ,r .

To see that SMM satisfies SI, note that an agent can guarantee herself at least ei resources (her
utility from not participating) at each round by reporting d ′i,r = ei for all r . By SP, truthful reporting
achieves at least this utility. Therefore, truthful reporting achieves at least as much utility as not

participating in SMM, which proves SI. Finally, SMM satisfies efficiency by definition, since it either

completely fulfills all demands or allocates all resources to agents that value them highly. □

3.2 Properties of Mechanisms for L > 0
We now consider the general setting where an agent’s low valuation is still positive. Unfortunately,

SMM no longer retains its properties from the L = 0 case. Agents are no longer indifferent to

forsaking low-valued resources and may lie in order to receive them.

Theorem 8. When L > 0, static max-min mechanism violates strategy-proofness and sharing
incentives.

Proof. Consider an instance with 2 agents, each with endowment ei = 1, and a single round.

Agent 1 has demand 2 and agent 2 has demand 0. SMM allocates both resources to agent 1 and

nothing to agent 2. However, had agent 2 not participated in the mechanism, she would have

received one resource and utility L > 0. Similarly, had she misreported her demand to be 1, she

would have received one resource and utility L > 0. □

Indeed, in this general setting, no mechanism can simultaneously satisfy efficiency and either of

the two other desired properties.

Theorem 9. When L > 0, there is no dynamic mechanism that satisfies α-sharing incentives and
efficiency, for any α > 0.

Proof. Consider an instance with two agents, each with endowment ei = 1, and a single round.

Agent 1 has demand 2 and agent 2 has demand 0. Efficiency dictates that we allocate both resources

to agent 1, which would violate α-SI for agent 2 for any α > 0. □

Theorem 10. When L > 0, there is no dynamic mechanism that satisfies strategy-proofness and
efficiency.

Proof. Consider an instance with two agents, each with endowment ei = 1, and a single round.

Both agents have demand 0. For efficiency, the mechanism must allocate all the resources so that at

least one agent receives ai,1 > 0. Supposing without loss of generality that a1,1 > 0, then a2,1 < 2.

If agent 2 misreports d ′
2,1 = 2, by efficiency, the mechanism must allocate both resources to agent 2,

which is an improvement over her utility from reporting truthfully. □

Note that SP and SI are compatible. Amechanism that statically allocates agents their endowments

satisfies SP and SI; agents have no incentive to misreport because allocations do not depend on

reports and agents receive their fair share of resources. This mechanism clearly fails to satisfy

efficiency and does not extract any benefit from sharing. In §5, we propose amechanism that satisfies

strategy-proofness, guarantees each user at least 50% of their utilities from sharing incentives, and

provides an asymptotic efficiency guarantee.

4 PROPORTIONAL SHARINGWITH CONSTRAINTS PROCEDURE
The mechanisms we present in the remainder of this paper have, at their core, a procedure we call

Proportional Sharing With Constraints (PSWC). The procedure allocates some amount of resources

among agents proportionally to their (exogenous) weights subject to (agent-dependent) minimum

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 3. Publication date: March 2018.
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Fig. 2. Proportional Sharing With Constraints. There are six agents with equal weights. The allocations are
represented by the height of the corresponding blue vertical bar. The allocations can be thought of as the
‘most equal’ allocations, subject to no agent receiving less than her minimum constraint or more than her
maximum.

and limit constraints: (1) each agent receives at least her minimum allocation, and (2) each agent

should receives no more than her limit allocation.

Formally, PSWC takes as input an amount to allocate A, weights w = (w1, . . . ,wn ), minimum

allocations m = (m1, . . . ,mn ), and limit allocations l = (l1, . . . , ln ). PSWC outputs a vector of

allocations a = (a1, . . . ,an ) defined as the solution to the following program.

Minimize x ,

s.t. ai/wi ≤ x ifmi < ai ≤ li ,

ai ≤ li ∀i,

ai ≥ mi ∀i,∑
i ∈[n]

ai = A.

PSWC is illustrated in Figure 2. The program can be solved in O (n log(n)) time by the Divvy

algorithm [20]. The Divvy algorithm proceeds by sorting the limit and minimum allocation bounds

inO (n log(n)) time, and then conducting a linear time search for the optimal value of x by increasing

the allocations in discrete steps until all resources have been allocated.

The following lemma characterizes the allocations produced by the PSWC procedure and will be

useful in our later proofs.

Lemma 11. Under PSWC, for every agent i , ai = max(mi ,min(li ,xwi )).

Proof. First, we show that if mi < xwi , then ai = min(li ,xwi ). If ai > min(li ,xwi ), then at

least one constraint is violated. If ai < min(li ,xwi ), then there exists at least one agent ℓ such that

aℓ = xwℓ because otherwise, x is not optimal. In this case, ai can be increased while aℓ for all ℓ
with aℓ = xwℓ decreases. This allows for a smaller value of x , which contradicts the optimality of

x . Next, we show that ifmi ≥ xwi , then ai =mi . Since ai cannot be less thanmi , if ai is not equal
tomi , then ai > mi , which means ai > xwi . However, since ai > mi , the first constraint dictates

that ai ≤ xwi , a contradiction. Combining these two cases gives the desired result. □

Our proposed mechanisms all have similar structure. First, agents always receive exactly the

same number of resources that they contribute to the system (over the entire R rounds). This is a

fairness primitive in its own right, but is primarily a design feature that helps us provide desirable

properties. Second, all our proposed dynamic mechanisms call the PSWC procedure to allocate
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resources at each round. Our mechanisms are determined primarily by how we set the minimum

and maximum constraints.

5 FLEXIBLE LENDING MECHANISM
We now turn to designing mechanisms that satisfy our game-theoretic desiderata while increasing

efficiency significantly over static allocation. The static allocation mechanism satisfies both SP

and SI, but it does not exhibit any gains from sharing. DMM and SMM sacrifice SP and SI in

exchange for efficiency. However, in the absence of SP, any guarantee on efficiency based on agents’

demands is not meaningful as agents have incentives to misreport their demands when L > 0.

In this section, we present the flexible lending (FL) mechanism. The flexible lending mechanism

achieves strategy-proofness and an asymptotic efficiency guarantee. FL satisfies a theoretical 0.5

approximation to SI and our simulation results show that it significantly outperforms this bound in

practice (see §7).

5.1 Definition
For a fixed number of rounds R, FL allocates exactly Rei resources to each agent i , which is exactly

her contribution to the shared pool over all R rounds. The mechanism enforces this constraint by

simply removing agent i from the list of eligible agents once she receives Rei resources in total.

We keep track of the resources each agent has received with a running token count ti , effectively
‘charging’ each agent a token for every resource she receives. We denote by ti,r the number of

tokens that agent i holds at the start of round r . Thus, the number of tokens that an agent holds

puts a hard limit on the number of resources she can receive at any given round.

Algorithm 1 presents the flexible lending mechanism. We define
¯di to be the allocatable demand

of agent i at each round, which is simply the minimum of her reported demand d ′i,r and the number

of tokens she has remaining ti . We distinguish between two cases depending on whether the total

allocatable demand is higher or lower than the total supply of resources.

First, if the total allocatable demand is at least as high as the total supply, then FL runs PSWCwith

the minimum allocation for each agent set to 0, and the limit allocation set to
¯di . This way, resources

are allocated proportionally among all agents that want them. Second, if the total allocatable

demand is less than the total supply, then agents receive their full allocatable demand. Therefore,

FL runs PSWC with minimum allocation for each agent i set to ¯di , and limit allocations set to her

number of tokens ti (which is always at least as large as her allocatable demand). This way, FL

allocates resources proportionally among all agents, subject to the condition that no agent receives

fewer resources than her demand.

Algorithm 1 Flexible Lending Mechanism

t = Re ▷ Initialize token count

for r ∈ {1, . . . ,R} do
¯d← min(d′·,r, t) ▷ ¯di is i’s allocatable demand

D ←
∑

i ∈[n]

¯di
if D ≥ E then

a·,r ← PSWC(A = E, l = ¯d,m = 0,w = e)
else

a·,r ← PSWC(A = E, l = t,m = ¯d,w = e)
end if
t← t − a·,r

end for
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We illustrate FL with an example.

Example 12. Consider a system with three agents and four rounds. Each agent has endowment
ei = 1. Suppose that agents’ (truthful) reports are given by the following table:

di,1 di,2 di,3 di,4
i = 1 3 1 1 0
i = 2 0 2 1 2
i = 3 0 0 0 4

FL allocations are given by the following table:

aFLi,1 aFLi,2 aFLi,3 aFLi,4
i = 1 3 1 0 0
i = 2 0 2 1.5 0.5
i = 3 0 0 1.5 2.5

While all agents have tokens remaining, FL efficiently allocates resources. However, in round 3, agent 1
has no tokens remaining and therefore the supply of resources exceeds the allocatable demand. In this
case, resources are evenly divided between agents 2 and 3. In the final round, agent 2 can receive only
0.5 resources before running out of tokens, so the rest of the resources are allocated to agent 3.

5.2 Basic Properties
Next, we study the properties of FL. We first show that FL satisfies strategy-proofness. We then

show that FL guarantees at least 50% of SI performance. And finally we show that FL provides an

asymptotic efficiency guarantee. Throughout this section, we extensively use the following lemma

which characterizes FL allocations.

Lemma 13. Let x denote the objective value of FL’s call to PSWC at round r . If D ≥ E, then
ai,r = min(xei ,di,r , ti,r ). If D < E, then ai,r = min(ti,r ,max(di,r ,xei )).

Proof. Suppose first that D ≥ E. Substituting the relevant terms into Lemma 11, we have

ai,r = max(0,min(min(di,r , ti,r ),xei )) = min(xei ,di,r , ti,r ).

If instead D < E, then again substituting into Lemma 11 gives

ai,r = max(min(di,r , ti,r ),min(ti,r ,xei )) = min(ti,r ,max(di,r ,xei )).

The final equality, max(min(A,B),min(A,C )) = min(A,max(B,C )) can easily be checked to hold

case by case for any relative ordering of A, B, and C . □

We next prove a basic monotonicity result, which states that if we shift some tokens to a single

agent from all other agents, then the agent with more tokens achieves a (weakly) higher allocation.

The proof follows easily from Lemma 13 and is deferred to the Appendix.

Lemma 14. Consider some agent i , and suppose that t ′i,r ≥ ti,r , t ′j,r ≤ tj,r for all j , i , and
d ′k,r = dk,r for all k ∈ [n]. Then a′i,r ≥ ai,r .

As our main technical result, we show in the following subsection that FL is strategy-proof. At a

high level, we show that if an agent receives fewer high-valued resources as a result of misreporting,

then her allocations in all future rounds are weakly higher. This means that she cannot receive

fewer low-valued resources at any future round, relative to her allocations had she not misreported.

Therefore, because the total number of resources allocated to each agent is fixed (by the initial

token count), her misreport can only result in trading high-valued resources at an early round for

other, potentially low-valued, resources at later rounds.
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5.3 Strategy-Proofness
Suppose agent i reports demands that are not equal to her true demands. Let r ′ be the latest round
for which i misreports. That is, r ′ = max{r : d ′i,r , di,r }. Suppose that d

′
i,r ′ < di,r ′ . We show that,

all else being equal, i could (weakly) improve her utility by instead reporting d ′i,r ′ = di,r ′ . The proof

that reporting d ′i,r ′ > di,r ′ is also (weakly) worse than reporting d ′i,r ′ = di,r ′ is almost identical and

can be found in Appendix B. It follows from this that FL is strategy-proof, since any non-truthful

reports can be converted to truthful reports one round at a time, (weakly) improving i’s utility.
We consider parallel universes: one in which agent i misreports d ′i,r ′ at round r

′
(the ‘misreported

instance’) and one in which she truthfully reports di,r (the ‘truthful instance,’ even though i’s
reports prior to r ′ may yet be non-truthful). All other reports are identical in both universes. We

denote allocations and tokens in the misreported instance using a′ and t ′, respectively, and in the

truthful instance by a and t . We denote by Dr and D
′
r the total demand D at round r in the truthful

and misreported instances, respectively.

We first note that for all rounds prior to r ′, the allocations in the truthful and misreported

instances are the same.

Lemma 15. For all rounds r < r ′ and for all agents j, a′j,r = aj,r .

Proof. The mechanism does not take future reports into account, so because agents’ demands

in both instances are identical up to round r ′, so are the allocations. □

We next show a monotonicity lemma, which says that agent i’s allocation at round r ′ is (weakly)
smaller in the misreported instance than the truthful instance, and all other agents’ allocations are

(weakly) larger.

Lemma 16. For all agents j , i , we have that a′j,r ′ ≥ aj,r ′ . Further, a′i,r ′ ≤ ai,r ′ .

Proof. We prove the statement for all j , i . The statement for i follows immediately because

the total number of allocated resources is fixed. Observe first that

D ′r ′ =
∑
k ∈[n]

min(d ′k,r ′, tk,r ′ ) ≤
∑
k ∈[n]

min(dk,r ′, tk,r ′ ) = Dr ′,

since i’s demand decreases in the misreported instances but all other demands and token counts

stay the same. Let x ′ denote the objective value in FL’s call to PSWC in the misreported instance,

and x in the truthful instance.

Suppose that E ≤ D ′r ′ ≤ Dr ′ . Suppose first that x
′ > x . Then, by Lemma 13, for all j , i , we have

a′j,r ′ = min(x ′ej ,dj,r ′, tj,r ′ ) ≥ min(xej ,dj,r ′, tj,r ′ ) = aj,r ′ .

Next, suppose that x ′ ≤ x . Then, again by Lemma 13 and the fact that d ′i,r ′ < di,r ′ ,

a′i,r ′ = min(x ′ei ,d
′
i,r ′, ti,r ′ ) ≤ min(xei ,di,r ′, ti,r ′ ) = ai,r ′ .

And, for all j , i ,

a′j,r ′ = min(x ′ej ,dj,r ′, tj,r ′ ) ≤ min(xej ,dj,r ′, tj,r ′ ) = aj,r ′ .

Because a′k,r ′ ≤ ak,r ′ for all agents k , and
∑

k ∈[n]
ak,r ′ =

∑
k ∈[n]

a′k,r ′ , it must be the case that

a′k,r ′ = ak,r ′ for all k , which satisfies the statement of the lemma.

Next, suppose that D ′r ′ < E ≤ Dr ′ . By the definition of FL, a′k,r ′ ≥ min(d ′k,r ′, tk,r ′ ) for all k , and

ak,r ′ ≤ min(dk,r ′, tk,r ′ ) for all k . Since min(d ′j,r ′, tj,r ′ ) = min(dj,r ′, tj,r ′ ) for all j , i , we have that

a′j,r ′ ≥ aj,r ′ , implying also that a′i,r ′ ≤ ai,r ′ .
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Finally, suppose that D ′r ′ ≤ Dr ′ < E. Suppose first that x ′ ≤ x . Then, by Lemma 13 and the

assumption that d ′i,r ′ < di,r ′ , we have

a′i,r ′ = min(ti,r ′,max(x ′ei ,d
′
i,r ′ )) ≤ min(ti,r ′,max(xei ,di,r ′ )) = ai,r ′

and

a′j,r ′ = min(tj,r ′,max(x ′ej ,dj,r ′ )) ≤ min(tj,r ′,max(xej ,dj,r ′ )) = aj,r ′

for all j , i . Because a′k,r ′ ≤ ak,r ′ for all agents k , and
∑

k ∈[n]
ak,r ′ =

∑
k ∈[n]

a′k,r ′ , it must be the

case that a′k,r ′ = ak,r ′ for all k , which satisfies the lemma’s statement. Next, suppose that x ′ > x .

Then, again by Lemma 13, for all j , i , we have

a′j,r ′ = min(tj,r ′,max(x ′ej ,dj,r ′ )) ≥ min(tj,r ′,max(xej ,dj,r ′ )) = aj,r ′ .

□

If it is the case that a′i,r ′ = ai,r ′ , then it must also be the case that a′j,r ′ = aj,r ′ for all j , i . That is,

allocations at round r ′ are the same in the misreported instance as the truthful instance. Therefore,

for all rounds r ≤ r ′, allocations in both universes would be the same. In all rounds r > r ′, reports
in both universes are the same. Together, these imply that allocations for all rounds r > r ′ would
be the same in both universes. In particular, i does not profit from her misreport and could weakly

improve her utility by reporting d ′i,r ′ = di,r ′ . So, for the remainder of this section, we assume that

a′i,r ′ < ai,r ′ .
Our next lemma states that the resources that i sacrifices in round r ′ are high-valued resources for

her. The intuition is that if it were the case that i was being forced to receive low-valued resources

under truthful reporting, then she will still be forced to receive the same number of resources

when she under-reports her demand (since there is no agent with excess demand to absorb extra

resources).

Lemma 17. If a′i,r ′ < ai,r ′ , then ai,r ′ ≤ di,r ′ .

Proof. Suppose for contradiction that ai,r ′ > di,r ′ . It must therefore be the case that D ′r ′ ≤ Dr ′ <
E, where the first inequality holds because d ′j,r ′ = dj,r ′ for all j , i and d ′i,r ′ < di,r ′ . Let x denote

the objective value of FL’s call to PSWC in the truthful instance, and x ′ in the misreported instance.

Suppose that x ′ ≤ x . Then, by Lemma 13 and the assumption that d ′i,r ′ < di,r ′ ,

a′i,r ′ = min(ti,r ′,max(x ′ei ,d
′
i,r ′ )) ≤ min(ti,r ′,max(xei ,di,r ′ )) = ai,r ′,

and for all j , i ,

a′j,r ′ = min(tj,r ′,max(x ′ej ,dj,r ′ )) ≤ min(tj,r ′,max(xej ,dj,r ′ )) = aj,r ′ .

Because a′k,r ′ ≤ ak,r ′ for all agents k , and
∑

k ∈[n]
ak,r ′ =

∑
k ∈[n]

a′k,r ′ , it must be the case that

a′k,r ′ = ak,r ′ for all k . This contradicts the assumption that a′i,r ′ < ai,r ′ .

Now suppose that x ′ > x . Note that xei > di,r ′ > d ′i,r ′ , where the first inequality holds because

ai,r ′ > di,r ′ . Then, again by Lemma 13 and the previous observation, we have

a′i,r ′ = min(ti,r ′,max(x ′ei ,d
′
i,r ′ )) = min(ti,r ′,x

′ei )

≥ min(ti,r ′,xei ) = min(ti,r ′,max(xei ,di,r ′ )) = ai,r ′,

which contradicts a′i,r < ai,r . Since we arrive at a contradiction in all cases, the lemma statement

must be true. □

As a corollary, we can write the difference in utility between the truthful and misreported

instances that i derives from round r ′.
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Corollary 18. ui,r ′ (ai,r ′ ) − ui,r ′ (a
′
i,r ′ ) = H (ai,r ′ − a

′
i,r ′ ).

Proof. Because a′i,r ′ < ai,r ′ ≤ di,r ′ , we can substitute the utility values from Equation (2):

ui,r ′ (ai,r ′ ) − ui,r ′ (a
′
i,r ′ ) = ai,r ′H − a

′
i,r ′H = H (ai,r ′ − a

′
i,r ′ ).

□

For a fixed agent k , denote by rk the round at which agent k runs out of tokens in the truthful

instance. That is, rk is the first (and only) round with ark = tk,rk > 0. Note that ri ≥ r ′, since
ai,r ′ > 0. Given this, our next lemma states that, under certain conditions, the effect of i’s misreport,

d ′i,r < di,r , is to increase the objective value of FL’s call to PSWC.

Lemma 19. Let r < ri (i.e. ai,r < ti,r ). Suppose t ′j,r ≤ tj,r for all agents j , i . Suppose that either
min(Dr ,D

′
r ) ≥ E or max(Dr ,D

′
r ) < E. Then x ′ ≥ x , where x ′ denotes the objective value of FL’s call

to PSWC in the misreported instance and x in the truthful instance.

Proof. First, suppose that min(Dr ,D
′
r ) ≥ E. Suppose for contradiction that x ′ < x . By Lemma

13, for all j , i ,

a′j,r = min(x ′ej ,dj,r , t
′
j,r ) ≤ min(xej ,dj,r , tj,r ) = aj,r ,

where the inequality follows from the assumption that x ′ < x and that t ′j,r ≤ tj,r . Further,

a′i,r = min(x ′ei ,di,r , t
′
i,r ) ≤ min(x ′ei ,di,r ) ≤ min(xei ,di,r ) = min(xei ,di,r , ti,r ) = ai,r ,

where the second inequality follows from the assumption that x ′ < x , and the second to the last

equality follows from the assumption that ai,r < ti,r . Therefore, a
′
k,r ≤ ak,r for all agents k . Since∑

a′k,r =
∑
ak,r , it must be the case that a′k,r = ak,r for all agents k . Now, by the definition of FL in

this case, ak,r /ek ≤ x ′ < x for all agents k with ak,r > 0. Therefore x is not the optimal objective

value of PSWC in the truthful instance, a contradiction. Thus, x ′ ≥ x .
Next, suppose that max(Dr ,D

′
r ) < E. Suppose for contradiction that x ′ < x . By Lemma 13,

a′j,r = min(t ′j,r ,max(x ′ej ,dj,r )) ≤ min(tj,r ,max(xej ,dj,r )) = aj,r ,

for all j , i , where the inequality follows from the assumption that x ′ < x and that t ′j,r ≤ tj,r .
Further, we have

a′i,r = min(t ′i,r ,max(x ′ei ,di,r )) ≤ max(x ′ei ,di,r )

≤ max(xei ,di,r ) = min(ti,r ,max(xei ,di,r )) = ai,r ,

where the second inequality follows from the assumption that x ′ < x and the second to last equality

from the assumption ai,r < ti,r . Therefore, a
′
k,r ≤ ak,r for all agents k . Since

∑
a′k,r =

∑
ak,r , it

must be the case that a′k,r = ak,r for all agents k . Consider all agents with min(dk,r , tk,r ) < ak,r
(i.e. those agents for which the first constraint in the PSWC program binds in the truthful instance).

For all such agents, we have

min(dk,r , tk,r ) < ak,r =⇒ dk,r < ak,r ≤ tk,r =⇒ dk,r < a′k,r ≤ t ′k,r =⇒ min(dk,r , t
′
k,r ) < a′k,r ,

which implies that the constraints bind in the misreported instance as well. Therefore, a′k,r /ek ≤

x ′ < x for all agents k for which the first constraint binds in the truthful instance. Therefore x
is not the optimal objective value of the PSWC program in the truthful instance, a contradiction.

Thus, x ′ ≥ x . □

Using Lemma 19, we show our main lemma. This lemma allows us to make an inductive argument

that, after giving up some resources in round r ′, i’s allocation is (weakly) larger for all future rounds

in the misreported instance than the truthful instance.
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Lemma 20. Let r ′ < r < ri (i.e. ai,r < ti,r ). Suppose that t ′j,r ≤ tj,r for all agents j , i . Then for all
j , i , either: (1) a′j,r = t ′j,r , or (2) a

′
j,r ≥ aj,r .

Proof. Note that t ′j,r ≤ tj,r for all j , i implies that t ′i,r ≥ ti,r , which we use in the proof.

Also, because r > r ′, we know that d ′i,r = di,r , as r
′
is the last round for which d ′i,r , di,r .

We assume that condition (1) from the lemma statement is false (i.e. a′j,r < t ′j,r ) and show that

condition (2) must hold. Suppose first that Dr < E. Then, because ai,r < ti,r , we know that

di,r ≤ ti,r ≤ t ′i,r . This implies that min(di,r , ti,r ) = min(di,r , t
′
i,r ) = di,r . Let j , i . Since t ′j,r ≤ tj,r ,

we have min(dj,r , t
′
j,r ) ≤ min(dj,r , tj,r ). Therefore, it is the case that D

′
r ≤ Dr < E. By Lemma

13 and the assumption that a′j,r < t ′j,r , it must be the case that a′j,r = max(dj,r ,x
′ej ). Further, by

Lemma 19, we know that x ′ ≥ x . Therefore, we have

aj,r = max(dj,r ,xej ) ≤ max(dj,r ,x
′ej ) = a′j,r .

That is, condition (2) from the lemma statement holds.

Now suppose that Dr ≥ E. Then, from the definition of the mechanism, we have that aj,r ≤
min(dj,r , tj,r ) ≤ dj,r . If it is the case that D

′
r < E, then we have that a′j,r ≥ min(dj,r , t

′
j,r ) = dj,r ,

where the equality holds because otherwise we would have a′j,r ≥ t ′j,r , violating the assumption

that a′j,r < t ′j,r . Using these inequalities, we have a′j,r ≥ dj,r ≥ aj,r , so condition (2) from the

statement of the lemma holds. Finally, it may be the case that Dr ≥ E and D ′r ≥ E. By Lemma 13

and the assumption that a′j,r < t ′j,r , we have

a′j,r = min(dj,r ,x
′ek ) ≥ min(dj,r ,xek ) = aj,r ,

where the inequality follows from Lemma 19. Thus, condition (2) of the lemma statement holds. □

Finally, we prove that the flexible lending mechanism is strategy-proof. This proof establishes

that misreporting d ′i,r is never beneficial for an agent.

Theorem 21. The flexible lending mechanism satisfies SP.

Proof. We first observe that for every r ≤ ri , t
′
j,r ≤ tj,r for every j , i . This is true for every

r ≤ r ′ because a′j,r = aj,r for r < r ′, by Lemma 15. For r = r ′ + 1, it follows from Lemma 16, which

says that a′j,r ′ ≥ aj,r ′ . For all subsequent rounds, up to and including r = ri , it follows inductively

from Lemma 20: t ′j,r ≤ tj,r implies that either a′j,r = t ′j,r , in which case t ′j,r+1
= 0 ≤ tj,r+1, or

a′j,r ≥ aj,r , in which case t ′j,r+1
= t ′j,r − a

′
j,r ≤ tj,r − aj,r = tj,r+1).

Consider an arbitrary round r , r ′, with r ≤ ri . By the above argument, we know that t ′j,r ≤ tj,r
for all j , i . Further, because reports in the truthful and misreported instances are identical on all

rounds r , r ′, we have that dk,r = d ′k,r for all k ∈ [n]. Therefore, by Lemma 14, a′i,r ≥ ai,r . For

rounds r > ri , it is also true that a′i,r ≥ ai,r , since ai,r = 0 for these rounds by the definition of ri .
Finally,

Ui,R (ai) −Ui,R (a′i ) =
R∑
r=1

(ui,r (ai,r ) − ui,r (a
′
i,r ))

= (ui,r ′ (ai,r ′ ) − ui,r ′ (a
′
i,r ′ )) +

∑
r,r ′

(ui,r (ai,r ) − ui,r (a
′
i,r ))

= H (ai,r ′ − a
′
i,r ′ ) −

∑
r,r ′

(ui,r (a
′
i,r ) − ui,r (ai,r ))

≥ H (ai,r ′ − a
′
i,r ′ ) − H (ai,r ′ − a

′
i,r ′ ) = 0
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Here, the third transition follows fromLemma 18, and the final transition follows because

∑
r,r ′ (a

′
i,r−

ai,r ) = ai,r ′ − a
′
i,r ′ , and every term in the sum is positive.

The proof for the case where d ′i,r ′ > di,r ′ is in the Appendix. Together, they show that i achieves

(weakly) higher utility by truthfully reporting her demand di,r ′ at round r , rather than misreporting

d ′i,r ′ , di,r ′ . By the argument at the start of this subsection, this is sufficient to prove strategy-

proofness. □

5.4 Approximating Sharing Incentives
Unfortunately, FL fails to satisfy SI, and may give an agent as little as half of her SI share.

Theorem 22. FL does not satisfy α-SI for any α > 0.5.

Proof. Consider an instance with R rounds, and R + 1 agents, each with endowment ei = 1.

Agent 1 has d1,1 = d1,R = 1 and d1,2 = . . . = d1,R−1 = 0, agent 2 has d2,r = R for all rounds r ,
and all other agents have di,r = 0 for all rounds r . In round 1, agent 1 receives allocation a1,1 = 1

and agent 2 receives a2,1 = R. For rounds r = 2, . . . ,R − 1, each agent j , 2 receives allocation

aj,r = 1 + 1/R. Therefore, in round R, agent 1 receives a1,R = R − 1 − (R − 2) (1 + 1/R) = 2/R. Her
total utility is therefore ((R + 2)/R)H + (R − (R + 2)/R)L, compared to total utility 2H + (R − 2)L
that she would have received by not participating in the mechanism. For L = 0, the ratio of these

utilities approaches 0.5 as R → ∞. □

However, FL does provide a 0.5 approximation guarantee to SI, as we show in the remainder of

this subsection. We suppose that agent i truthfully reports her demand di,r for all rounds (since FL
is SP, she could do no better by lying), and show that she receives at least half as much utility as

she would by not participating.

Recall that for every agent i , we denote by ri the first round at which ai,ri = ti,ri > 0. For every

agent i , define sets Bi and Ai to be the agents that run out of tokens before and after i , respectively.
Formally,

Bi = {j : r j ≤ ri and aj,ri /ej < ai,ri /ei }

Ai = {j : r j ≥ ri and r j = ri =⇒ aj,ri /ej ≥ ai,ri /ei }.

For a round r , define

si,r = ai,r − ei

∑
j ∈Ai aj,r∑
j ∈Ai ej

.

That is, si,r is the number of resources i gets more than the (endowment weighted) average number

of resources for agents in Ai . Note further that

R∑
r=1

si,r =
R∑
r=1

ai,r −
ei∑

j ∈Ai ej

∑
j ∈Ai

R∑
r=1

aj,r = ei −
ei∑

j ∈Ai ej

∑
j ∈Ai

ej = 0.

Lemma 23. For every agent i and every round r , si,r ≤ min(di,r ,ai,r ).

Proof. Ifai,r ≤ di,r , then the lemma statement says that si,r ≤ ai,r , which is obviously true by the
definition of si,r . If ai,r > di,r , then we know from the definition of FL that

∑
j ∈[n]

min(dj,r , tj,r ) < E,
and ai,r = min(xei , ti,r ), where x is the objective value of FL’s call to the PSWC program. Further,

all agents with
aj,r
ej
<

ai,r
ei
≤ x are those with aj,r = tj,r , so by definition, r j ≤ ri and

aj,r
ej
<

ai,r
ei

,

which means j ∈ Bi . Therefore,
aj,r
ej
≥

ai,r
ei

for all j ∈ Ai , which implies

∑
j∈Ai aj,r∑
j∈Ai ej

≥
ai,r
ei

. To

complete the proof, note that

si,r = ai,r − ei

∑
j ∈Ai aj,r∑
j ∈Ai ej

≤ ai,r − ei
ai,r
ei
= 0 ≤ di,r = min(di,r ,ai,r ).
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□

Theorem 24. Under FL, agents receive at least half the number of high-valued resources that they
would have received under static allocations.

Proof. Let S denote the number of high-valued resources that agent i receives under static
allocations. While i has tokens remaining, under FL, she is guaranteed to get as many resources

as she demands up to her endowment ei . Thus, for these rounds, she would obtain no additional

high-valued resources from not participating in the mechanism. However, there is the possibility

that by participating in the mechanism, she runs out of tokens prematurely, thus missing out on

resources in later rounds that she wants, and would have received by not participating in the

mechanism (as in the proof of Theorem 22). The proof proceeds by showing that for every resource

that i does not receive due to a lack of tokens, she must have received at least one high-valued

resource in an earlier round.

Suppose first that ai,ri ≥ ei . We have the following inequality:∑
r ≤ri

min(di,r ,ai,r ) ≥
∑
r ≤ri

si,r = −
∑
r>ri

si,r =
∑
r>ri

(
ei

∑
j ∈Ai aj,r∑
j ∈Ai ej

)
=

∑
r>ri

(
E∑

j ∈Ai ej

)
ei ≥ (T − ri )ei .

(1)

The first inequality follows from Lemma 23, and the second inequity because

∑
j ∈Ai ej ≤ E. The

first equality holds because

∑R
r=1

si,r = 0, and the second equality holds because ai,r = 0 for all

r > ri . The third equality holds because for rounds r > ri , only agents in Ai remain active, so all

resources are allocated to them.

Note that S , the number of high-valued resources that i receives by not sharing, is upper bounded
by

S ≤
R∑
r=1

min(di,r , ei ) ≤
∑
r ≤ri

min(di,r , ei ) +
∑
r>ri

ei

≤
∑
r ≤ri

min(di,r ,ai,r ) +
∑
r>ri

ei

=
∑
r ≤ri

min(di,r ,ai,r ) + (T − ri )ei

≤ 2

∑
r ≤ri

min(di,r ,ai,r ).

The third inequality holds because under FL guarantees each agent min(di,r , ei ) resources, provided
they have sufficient tokens remaining, which is the case because we assume ai,ri ≥ ei . The final
inequality follows from Equation (1). Since agent i receives exactly

∑
r ≤ri min(di,r ,ai,r ) ≥ S/2

resources from participating in FL, the lemma holds in this case.

Second, suppose that ai,ri < ei . We have the following inequality:∑
r ≤ri

min(di,r ,ai,r ) ≥
∑
r<ri

min(di,r ,ai,r ) ≥
∑
r<ri

si,r = −
∑
r>ri

si,r − si,ri

≥ ei (T − ri ) + ei

∑
j ∈Ai aj,ri∑
j ∈Aj ej

− ai,ri ≥ ei (T − ri ) + ei − ai,ri = ei (T − ri + 1) − ai,ri (2)

The first inequality holds because min(di,ri ,ai,ri ) ≥ 0. The second inequality follows from Lemma

23, and the third inequality holds from Equation (1) and the definition of si,ri . The fourth inequality

holds because at round ri , agent i receives allocation ai,ri < ei , therefore every agent j ∈ Bi receives
allocation aj,ri < ej , therefore

∑
j ∈Ai aj,ri ≥

∑
j ∈Ai ej .
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As with the previous case, we can derive an upper bound on S , the number of high-valued

resources i would receive by not sharing. First, suppose that ai,ri > di,ri . Then we have

S ≤
R∑
r=1

min(di,r , ei ) ≤
∑
r<ri

min(di,r , ei ) + di,ri +
∑
r>ri

ei

≤
∑
r<ri

min(di,r ,ai,r ) +min(di,ri ,ai,ri ) +
∑
r>ri

ei

=
∑
r ≤ri

min(di,r ,ai,r ) + (T − ri )ei

≤
∑
r ≤ri

min(di,r ,ai,r ) + (T − ri + 1)ei − ai,ri

≤ 2

∑
r ≤ri

min(di,r ,ai,r )

The third inequality holds because FL guarantees each agent min(di,r , ei ) resources, provided they

have sufficient tokens remaining, and by the assumption that ai,ri > di,ri , the fourth inequality

from the assumption that ai,ri < ei , and the final inequality from Equation (2). Next, suppose that

ai,ri ≤ di,ri . Then we have

S ≤
R∑
r=1

min(di,r , ei ) ≤
∑
r<ri

min(di,r , ei ) + ei +
∑
r>ri

ei

≤
∑
r<ri

min(di,r ,ai,r ) + ai,ri + (ei − ai,ri ) +
∑
r>ri

ei

=
∑
r ≤ri

min(di,r ,ai,r ) + (T − ri + 1)ei − ai,ri

≤ 2

∑
r ≤ri

min(di,r ,ai,r )

The third inequality holds because FL guarantees each agent min(di,r , ei ) resources, provided they

have sufficient tokens remaining, the equality from the assumption that ai,ri ≤ di,ri , and the final

inequality from Equation (2).

As with the previous case, ei (T − ri + 1) − ai,ri is an upper bound on the number of H valued

resources that i may have been able to receive in rounds r ≥ ri had she not participated in the

mechanism, over and above those she receives by participating.

∑
r ≤ri min(di,r ,ai,r ) is the number of

H valued resources she receives by participating in the mechanism. Therefore

∑
r ≤ri min(di,r ,ai,r )+

ei (T −ri +1)−ai,ri ≤ 2

∑
r ≤ri min(di,r ,ai,r ) is an upper bound on the number ofH valued resources

i would receive by not participating in the mechanism. Therefore, i receives at least half as many

H valued resources from participating as she would have by not participating. □

Note that Theorem 24 implies the desired approximation. Suppose that i obtains utility SH +
(Rei −S )L by not participating in the mechanism. Theorem 24 in combination with the fact that she

will receive the same number of resources overall whether she participates or not, implies that, by

participating, she gets at least SH/2+ (Rei − S/2)L ≥ SH/2+ (Rei/2− S/2)L = (SH + (Rei − S )L)/2.

5.5 Limit Efficiency for Symmetric Agents
In this section, we prove that, under certain assumptions, FL is efficient in the limit as the number of

rounds grows large. Suppose that each agent has the same endowment. Without loss of generality,
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suppose that each agent has ei = 1. Further, suppose that demands are drawn i.i.d. across rounds

and that the distribution within rounds treats agents symmetrically, either demands are drawn i.i.d.

across agents, or there is correlation that treats all agents symmetrically.

Theorem 25. When demands are drawn i.i.d. across rounds and agents are symmetric, FL achieves
an (R − R2/3)/R fraction of the optimal efficiency with probability at least 1 − n3/R1/3. In particular,
FL approaches full efficiency with high probability in the limit as the number of rounds grows large.

Proof. Suppose we are in a world where tokens are unlimited. Let Q be a random variable

denoting how many tokens a single agent i would spend (i.e. how many resources i would be

allocated) in a single round. Note thatQ can never take a value larger than n, since only n resources

are allocated per round. Note that by the symmetry of the agents, Q is independent of the identity

of any single agent, and independent of the particular round since FL allocates independently of

the round. By symmetry, E(Q ) = 1. Let StdDev(Q ) = σ ≤ n, where the inequality holds because Q
is bounded by n. Let r = R − R2/3

and let Qr be a random variable denoting the number of tokens

i would spend before the start of round r + 1. Because demands are drawn independently across

rounds, and no agent runs out of tokens, E(Qr ) = r and StdDev(Qr ) =
√
rσ .

Consider the probability that agent i spends at least R tokens in the first r rounds:

P (Qr ≥ R) = P (Qr − E(Qr ) ≥ R − r )

= P (Qr − E(Qr ) ≥ R2/3

= P (Qr − E(Qr ) ≥
R1/6

σ

√
Rσ )

≤ P (Qr − E(Qr ) ≥
R1/6

σ

√
rσ )

≤
σ 2

R1/3

Here the final inequality follows from Chebyshev’s concentration inequality, because

√
rσ is the

standard deviation of Qr . Taking a union bound over all n agents, the probability that any agent

spends at least R tokens in the first r rounds is at most nσ 2/R1/3 ≤ n3/R1/3
.

Now suppose agents are limited by R tokens. If some agent runs out of tokens within r rounds in
this world, then it must also be the case that some agent spent at least R tokens within r rounds in
the unlimited token world. Therefore, the probability that any agent runs out of tokens is at most

the probability that some agent spends more than R tokens in the unlimited token world, which is

at most n3/R1/3
. This approaches 0 as R → ∞. So, with probability going to 1, no agent runs out of

tokens before round r .
By the definition of FL, full efficiency is achieved on all rounds for which no agents have their

allocation limited by lack of tokens. Therefore, with probability going to 1, FL allocates efficiently

for the first r rounds. Therefore, because demands are i.i.d. across rounds, the expected efficiency

of the mechanism approaches at least an r/R = (R − R2/3)/R fraction of the optimal efficiency. This

fraction approaches 1 as R → ∞. □

6 T-PERIOD MECHANISM
Wehave shown that FL satisfies strategy-proofness and a theoretical asymptotic efficiency guarantee.

Further, as we show in §7, FL exhibits only small efficiency loss in practice in settings where our

theoretical guarantee does not apply. However, FL does not achieve (full) sharing incentives. In

settings where agents require a strong guarantee in order to participate, it may be desirable to

strictly enforce sharing incentives, in which case FL is not a suitable choice. In this section, we
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introduce the T -Period mechanism, which satisfies both SP and SI. While the T -Period mechanism

does exhibit some gains from sharing (i.e., is more efficient than static allocation), it sacrifices some

efficiency relative to FL.

6.1 Definition
The T -Period mechanism splits the rounds into periods of length 2T .1 For the first T rounds of

each period, we allow the agents to ‘borrow’ unwanted resources from others. In the last T rounds

of each period, the agents ‘pay back’ the resources so that their cumulative allocation across the

entire period is equal to their endowment, 2Tei .
The allocations in the second set of T rounds are independent of reports and determined com-

pletely by the allocations in the first set of T rounds. Note that because the number of resources

that an agent i can pay back overT rounds is bounded byTei , we allow an agent to borrow at most

Tei resources (i.e., receive at most 2Tei resources) over the first T rounds of a period.

Algorithm 2 T -Period Mechanism

Input. Agents’ reported demands, d′, and their endowments, e
Output. Agents’ allocations, a

for r ∈ {1, . . . ,R} do
if (r mod 2T ) = 1 then

b← T e ▷ bi is the amount that i is able to borrow

y← 0 ▷ resources received so far this period.

end if
if 1 ≤ (r mod 2T ) ≤ T then

¯d← min(d′·,r, e + b) ▷ ¯di is i’s allocatable demand

D ←
∑

i ∈[n]

¯di
if D ≥ E then

a·,r ← PSWC(A = E, l = ¯d,m = 0,w = e)
else

a·,r ← PSWC(A = E, l = e + b,m = ¯d,w = e)
end if
y← y + a·,r
b← b −max(0, a·,r − e)

else
a·,r ← 1

T (2T e − y)
end if

end for

In Algorithm 2, each agent i has a borrowing limit, bi , which is defined to be the maximum

amount of resources that agent i can borrow in whatever remains of the first T rounds of each

period. For our analysis, we denote the value of bi at the start of round r by bi,r . At the beginning
of each period, we set bi,r to be Tei , because agent i can at most pay back her whole endowment,

ei , at every T ‘payback’ rounds. We again define
¯di to be the allocatable demand of agent i at each

round of the first T rounds and refer to
¯d ′i,r as agent i’s allocatable demand at round r . At each

1
For convenience, we suppose that R is a multiple of 2T . If this is not the case, we can adapt the mechanism by returning

each agent their endowment for any leftover rounds.
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round r , the allocatable demand of agent i is the minimum of her reported demand d ′i,r , and her

endowment plus her borrowing limit, ei + bi,r .
We illustrate the T -Period mechanism with an example.

Example 26. Consider the instance from Example 12, where each agent has endowment ei = 1 and
demands are given by:

di,1 di,2 di,3 di,4
i = 1 3 1 1 0
i = 2 0 2 1 2
i = 3 0 0 0 4

When T = 1, agents can ‘borrow’ resources at odd rounds and ‘pay back’ those resources at even
rounds. Therefore, the maximum allocatable demand for each agent and at each round is 2, because
the ‘payback’ period only has one round. The 1-Period (1-P) mechanism allocates resources as follows.

a1-Pi,1 a1-Pi,2 a1-Pi,3 a1-Pi,4
i = 1 2 0 1 1
i = 2 0.5 1.5 1 1
i = 3 0.5 1.5 1 1

At round 1, agent 1 wants 2 extra resources in addition to her endowment. However, under 1-P, she
can only afford 1 extra resource. She borrows 0.5 resources from agent 2 and 0.5 resources from agent 3.
At round 2, agent 1 pays back agents 2 and 3 and receives zero resources. When T = 1, the mechanism
rigidly forces agents to pay back resources right after they borrow them. Agent 1 would prefer to get
her high-valued resource at round 2 and delay paying back agents 2 and 3 until the last round where
her demand is zero. Note that agent 3 would also prefer to be paid back in the last round, the only
round in which she has non-zero demand.

To see how increasing T allows more flexibility, consider T = 2 for the same example. The 2-Period
(2-P) mechanism allocates resources as follows.

a2-Pi,1 a2-Pi,2 a2-Pi,3 a2-Pi,4
i = 1 3 1 0 0
i = 2 0 2 1 1
i = 3 0 0 2 2

Agent 2 is allowed to borrow 2 extra resources over the first two rounds, whereas, under the 1-P
mechanism, she is never allowed to borrow more than one resource per round. She borrows these two
resources at the first round from agents 2 and 3, and pays them back at rounds 3 and 4.

Since the T -Period mechanism increases flexibility over the static mechanism, it provides some

gains from sharing. We would expect that increasing T , in general, will improve efficiency as it

allows for ‘borrowed’ resources to be spent more flexibly. In the following subsection, we show

that these efficiency gains do not harm SI or SP when T ≤ 2. Many proofs closely follow those in

§5 and are deferred to the Appendix.

6.2 Axiomatic Properties of T-Period Mechanism
We first state a lemma characterizing the allocations of the T -Period mechanism that is analogous

to Lemma 13

Lemma 27. Let x denote the objective value of a call to PSWC. Suppose that 1 ≤ (r mod 2T ) ≤ T .
If D ≥ E, then ai,r = min(ei + bi ,d

′
i,r ,xei ). If D < E, then ai,r = min(ei + bi ,max(d ′i,r ,xei )).
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To prove strategy-proofness of the 1-Period and 2-Period mechanisms, we show that no agent

has an incentive to report d ′i,r , di,r for any round r . We again consider parallel cases, one in which

agent i misreports d ′i,r and one in which she truthfully reports di,r with all other reports the same

across the two cases. Allocations and borrowing limits in the former case is denoted by a′ and b ′

respectively, and by a and b in the latter case. Let Dr denote the total allocatable demand at a round

r in the truthful case and D ′r denote the total allocatable demand at a round r in the misreported

case.

Since the T -Period mechanism resets every 2T rounds, we can assume without loss of generality

that R = 2T for the sake of reasoning about SP and SI. For rounds r > T , the allocations depend
completely on the allocations at earlier rounds, and not on the agents’ reports, so there is clearly no

benefit to an agent for misreporting in these rounds. It remains to show that reporting d ′i,r = di,r is
optimal for rounds r ≤ T .

Our next lemma is analogous to Lemma 16.

Lemma 28. Let ai,r and a′i,r denote the allocations of agent i at round r when she reports di,r and
d ′i,r , respectively, holding fixed the reports of all agents j , i and agent i’s reports on all rounds other
than r . If d ′i,r < di,r then a′i,r ≤ ai,r , and a′j,r ≥ aj,r for all j , i .

Suppose that i reports d ′i,r , di,r for some round r , but this misreport does not change i’s
allocation (that is, a′i,r = ai,r ). By Lemma 28, a′j,r = aj,r for all j , i . Therefore, i’s misreport has

not changed the allocations at round r . Since all future rounds take into account allocations at

previous rounds but not reports, i’s misreport has had no effect on the allocations in any round.

Thus, i did not benefit from this misreport. We therefore assume that a′i,r , ai,r for any round r
where i reports d ′i,r , di,r in the remainder of this section.

The next lemma and corollary are analogous to Lemma 17 and Corollary 18. They say that if

i obtains fewer resources from misreporting at round r , then those resources are all high-valued

resources.

Lemma 29. Hold the reports of all agents j , i fixed, and the reports of agent i on all rounds other
than r fixed. If i reports d ′i,r < di,r and receives a′i,r < ai,r , then ai,r ≤ di,r .

As a corollary we obtain a formula for the difference between the utility that agent i receives at
round r under truthful reporting and misreporting, when i gets fewer resources in the misreported

instance.

Corollary 30. Hold the reports of all agents j , i fixed, and the reports of agent i on all rounds other
than r fixed. If i reports d ′i,r < di,r and receives a′i,r < ai,r , then ui,r (ai,r ) −ui,r (a′i,r ) = H (ai,r −a

′
i,r ).

The next lemma and corollary complement Lemma 29 and Corollary 30 in the case where i
receives more resources in the misreported instance than the truthful instance at round r .

Lemma 31. Hold the reports of all agents j , i fixed, and the reports of agent i on all rounds other
than r fixed. If i reports d ′i,r > di,r and receives a′i,r > ai,r , then ai,r ≥ di,r .

Corollary 32. Hold the reports of all agents j , i fixed, and the reports of agent i on all rounds other
than r fixed. If i reports d ′i,r > di,r and receives a′i,r > ai,r , then ui,r (a′i,r ) −ui,r (ai,r ) = L(a′i,r − ai,r ).

We can now show that misreporting in round T is never beneficial to an agent.

Lemma 33. An agent never improves her utility by reporting d ′i,T , di,T .

As a corollary, we immediately have that the 1-Period mechanism is strategy-proof, because

misreporting at round r = 1 = T is not beneficial, and misreporting at round r = 2 > T is not

beneficial by our earlier argument.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 3. Publication date: March 2018.



Dynamic Proportional Sharing: A Game-Theoretic Approach 3:21

Corollary 34. The 1-Period mechanism satisfies strategy-proofness.

Our next lemma is a monotonicity statement for the borrowing limits: if i’s borrowing limit

at round r increases, and all other agents’ borrowing limits decrease, then i’s allocation (weakly)

increases and all other agents’ allocations (weakly) decrease.

Lemma 35. Suppose that r ≤ T . If b ′i,r ≥ bi,r and b ′j,r ≤ bj,r for all j , i , and d ′k,r = dk,r for all
agents k , then a′i,r ≥ ai,r .

We now show that the 2-Period mechanism is strategy-proof.

Theorem 36. The 2-Period mechanism satisfies strategy-proofness.

Proof. By Lemma 33, no agent can benefit by reporting d ′i,2 , di,2. Similarly, no agent can

benefit by reporting d ′i,r , di,r for r ∈ {3, 4}, because the 2-Period mechanism ignores reports for

those rounds. We may therefore assume that d ′i,r = di,r for all agents i and all rounds r ≥ 2.

We show that an agent cannot benefit from reporting d ′i,1 < di,1. The proof that reporting

d ′i,1 > di,1 is not beneficial is very similar. If a′i,1 = ai,1, then a′j,1 = aj,1 for all j , i , by Lemma 28.

Therefore, the allocations are unchanged for all rounds i , as the 2-Period mechanism takes into

account allocations at earlier rounds, but not reports, and the allocations at round 1 are the same in

the truthful and misreported instances. We therefore assume that ai,1 = a′i,1+k , for some k > 0. This

implies that bi,2 = b
′
i,2 − ki , for some ki ≤ k . By Corollary 30, i receives kH more utility in round 1

under truthful reporting than under misreporting. For every j , i , aj,1 ≤ a′j,1, and bj,2 = b
′
j,2 + kj ,

where

∑
j,i kj ≤ k . By Lemma 35, a′i,2 ≥ ai,2. In the following, we show that a′i,2 ≤ ai,2 + k . Let x

and x ′ denote the objective value in the T-Period mechanism’s call to PSWC when i reports di,r
and d ′i,r , respectively. We consider four cases, corresponding to whether resources in the truthful

and misreported instances are over or under demanded at round 2. Suppose first that D2 ≥ E and

D ′
2
≥ E. First, suppose that x ′ < x . Then, by Lemma 27,

a′i,2 = min(ei + b
′
i ,di,2,x

′ei ) = min(ei + bi,2 + ki ,di,2,x
′ei )

≤ min(ei + bi,2,di,2,x
′ei ) + ki ≤ min(ei + bi,2,di,2,xei ) + ki ≤ ai,2 + k

Next, suppose that x ′ ≥ x . Then for all j , i ,

a′j,2 = min(ej + b
′
j ,dj,2,x

′ej ) = min(ej + bj,2 − kj ,dj,2,x
′ej )

≥ min(ej + bj,2,dj,2,x
′ej ) − kj ≥ min(ej + bj,2,dj,2,xej ) − kj = aj,2 − kj

Taking the sum over all j , i and noting that

∑
j,i kj ≤ k , we have that

∑
j,i a

′
j,2 ≥

∑
j,i aj,2 − k .

Therefore, a′i,2 ≤ ai,2 + k . Second, suppose that D2 ≥ E and D ′
2
< E. Then, by the definition of the

T -Period mechanism, aj,2 ≤ min(ej + bj,2,dj,2) for all j , i . Further

a′j,2 ≥ min(ej + b
′
j ,dj,2) = min(ej + bj,2 − kj ,dj,2) ≥ min(ej + bj,2,dj,2) − kj ≥ aj,2 − kj

By the same argument as in the previous case, this implies that a′i,2 ≤ ai,2 + k . Third, suppose that
D2 < E and D ′

2
≥ E. Then

a′i,2 ≤ min(ei + b
′
i ,di,2) = min(ei + bi,2 + ki ,di,2) ≤ min(ei + bi,2,di,2) + ki ≤ ai,r + k

Finally, suppose that D2 < E and D ′
2
< E. First, suppose that x ′ < x . Then

a′i,2 = min(ei + b
′
i ,max(di,2,x

′ei )) = min(ei + bi,2 + ki ,max(di,2,x
′ei ))

≤ min(ei + bi,2,max(di,2,x
′ei )) + ki

≤ min(ei + bi,2,max(di,2,xei )) + ki ≤ ai,2 + k
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Next, suppose that x ′ ≥ x . Then for all j , i ,

a′j,2 = min(ej + b
′
j ,max(dj,2,x

′ej )) = min(ej + bj,2 − kj ,max(dj,2,x
′ej ))

≥ min(ej + bj,2,max(dj,2,x
′ej )) − kj

≥ min(ej + bj,2,max(dj,2,xej )) − kj = aj,2 − kj

Again, this implies that a′i,2 ≤ ai,2 + k .
In all cases, we have that ai,2 ≤ a′i,2 ≤ ai,2 + k . Therefore, a

′
i,1 + a

′
i,2 ≤ ai,1 + ai,2, which means

that a′i,3 ≥ ai,3 and a
′
i,4 ≥ ai,4. Consider the difference in utility across all four rounds between the

truthful and misreported instances.

Ui,4 (ai) −Ui,4 (a′i ) =
4∑

r=1

(
ui,r (ai,r ) − ui,r (a

′
i,r )

)
= kH +

4∑
r=2

(
ui,r (ai,r ) − ui,r (a

′
i,r )

)
≥ kH − kH = 0

The second transition is by Corollary 30, and the third transition because each a′i,r ≥ ai,r for all

r ∈ {2, 3, 4},
∑

4

r=2
(a′i,r − ai,r ) = k , and each resource can be worth at most H to agent i . □

Given that the 1-P and 2-P mechanisms satisfy SP, it is easy to see that they satisfy SI also. By

strategy-proofness, the utility that an agent gets from truthfully reporting her demands is at least

the utility she gets from reporting d ′i,r = ei for all rounds r . Sharing incentives therefore follows as

a corollary of the following proposition.

Proposition 37. Under the T -Period mechanism, any agent that reports d ′i,r = ei for all rounds r
receives ai,r = ei for all rounds r .

Corollary 38. The T-Period mechanism satisfies SI for T ≤ 2.

One may hope to continue increasing flexibility, and therefore performance, by increasing the

length of the ‘borrowing’ and ‘payback’ periods, potentially all the way to having a single borrowing

period of length R/2 and a single payback period of length R/2. Unfortunately, even for periods of

length 3, strategy-proofness is violated.

Example 39. Consider the 3-Pmechanism. Suppose thatn = 5 andR = 6. Each agent has endowment
ei = 1 (so each agent can borrow a total of three resources over the first three rounds, corresponding to
the sum of their endowment across the final three rounds). Truthful demands are given by the following
table.

di,1 di,2 di,3 di,4 di,5 di,6
i = 1 3 3 0 1 1 1
i = 2 0 3 3 1 1 1
i = 3 0 0 0 0 0 0
i = 4 0 0 0 0 0 0
i = 5 0 0 0 0 0 0

The corresponding allocations are given by:
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a3−P
i,1 a3−P

i,2 a3−P
i,3 a3−P

i,4 a3−P
i,5 a3−P

i,6
i = 1 3 2 0.75 0.08 0.08 0.08
i = 2 0.5 3 2 0.17 0.17 0.17
i = 3 0.5 0 0.75 1.58 1.58 1.58
i = 4 0.5 0 0.75 1.58 1.58 1.58
i = 5 0.5 0 0.75 1.58 1.58 1.58

Agent 1’s utility is 5.25H +0.75L. If agent 1 misreports d ′
1,1 = 2, it can be checked that her allocations

become 2, 2.5, 0.625, 0.292, 0.292, 0.292. Her utility is then 5.375H + 0.625L, which is higher than her
utility from reporting truthfully.

7 EVALUATION
In this section, we evaluate different mechanisms using real and synthetic benchmarks. For real

benchmarks, we use a Google cluster trace [1, 27], which data collected from a 12.5k-machine

cluster over a month-long period in May 2011. All the machines in the cluster share a common

cluster manager that allocates agent tasks to machines.

Agents submit a set of resource demands for each task (e.g. required processors, memory, or

disk space). Agent demands are normalized relative to the largest capacity of the resource on any

machine in the traces. The cluster manager records any changes in the status of tasks (e.g. being
evicted, failed, or killed) during their life cycle in a task event table. We use the task event table to

track agents’ demands for processors over time. Note that since all demands are scaled by the same

factor, we safely use normalized demands as actual demands.

We divide time into 15 min intervals.
2
We define agents’ demands for each interval to be the

sum of their demands for all tasks they run in that interval. After processing the traces, we remove

agents with constant demands or with average demand less than some marginal threshold. We

assume that agents’ endowments are equal to their average demands.

We observe that, for each agent, demands computed from Google traces have high correlations

over time. An agent with high demand at 12am has typically high demand at 12:15am as well. In

some deployment scenarios, demands may not be highly correlated. For example, when university

cluster machines are allocated to professors and researchers on a daily basis, a researcher may have

some jobs today, but may not want to use the cluster tomorrow.

To evaluate mechanisms in scenarios without correlated demands, we use synthetic benchmarks.

We create random agent populations and random number of rounds. For each agent, we uniformly

and randomly assign an endowment from 1 to 20. Once agents’ endowments are set, we uniformly

and randomly generate agent demands such that their average is equal to agents’ endowments (i.e.
di,r ∼ u[0, 2ei ])

Metrics. We report social welfare and Nash welfare, focusing on the number of high-valued

resources that each mechanism allocates. For social welfare, we report the following.

Social Welfare =
∑
i

∑
r

min(di,r ,ai,r ).

Social welfare is a measure of efficiency but fails to distinguish between fair and unfair outcomes.

For instance, suppose agent A with endowment 100 and agent B with endowment 1 both have

demand 101. Allocating 100 units to agent A and 1 unit to agent B has the same social welfare as

allocating 1 unit to A and 100 units to B. To distinguish between these two allocations, we also

report the (weighted) Nash welfare as follows.

2
We have created demands for varying time intervals. Since results do not change significantly for different interval lengths,

we only include results on 15-min-long intervals.
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Fig. 3. Normalized Social Welfare. Social welfare achieved by different dynamic allocation mechanisms
normalized to that of static allocations for Google cluster traces and 100 instances of random demands.
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normalized to that of static allocations for varying agent population sizes and numbers of rounds. We fix the
number of rounds to 50 when we vary the number of agents, and fix the number of agents to 50 when we
vary the number of rounds.

Nash Welfare =
∑
i

ei log(
∑
r

min(di,r ,ai,r )).

Observe that the Nash welfare metric is higher for the former scenario than the latter, which is in

line with our intuition about which allocation is more fair.
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Fig. 6. Sorted Sharing Index for Google Cluster Traces.
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Fig. 7. Sorted Sharing Index for a Random Trace.

7.1 Performance Evaluation
Figure 3 presents social welfare from varied allocation mechanisms for both Google and random

traces normalized to social welfare of static allocations. DMM and SMM produce the same, highest

social welfare as they always allocate resources to those agents with high valuations. Note that SMM

and DMM both fail to guarantee strategy-proofness when L > 0. Therefore, when agents report

strategically, for all the mechanism knows, SMM and DMM’s allocations could be as inefficient as

static allocations. But this is not captured in the figure, which implicitly assumes truthful reporting.

The 1-Period mechanism produces the lowest social welfare. Increasing the period length to 2

slightly improves the welfare of the T -Period mechanism. Note that both mechanisms outperform

static allocations. The R/2-Period mechanism achieves 87% of SMM welfare for Google traces, but

fails to provide strategy-proofness.

The social welfare of FL is competitive with state-of-the-art dynamic allocation mechanisms. FL

achieves 97% of SMM’s welfare for Google traces and 98% for random demands. In practice, strong

game-theoretic desiderata do not come with high welfare costs.

Figure 4 compares the normalized Nash welfare from varied mechanisms. Once again, DMM

and SMM outperform other mechanisms, but DMM and SMM’s outcomes are no longer equal

because the number of high-valued resources that each agent receives differs across mechanisms.

FL achieves 99.7% of DMM welfare for both Google cluster and random traces. This high Nash

welfare could be explained by FL’s high social welfare and the fact that FL allocates agents their

exact endowment across rounds.

Figure 5 shows how social welfare changes when varying population size and number of rounds

under FL. As the population size increases, the diversity between agents’ demands at each round

increases. Agents’ complementary demands improve welfare from FL as fewer agents are forced

to spend tokens on low-valued resources. Moreover, as the number of rounds increases, agents’

flexibility in spending their tokens on high-valued resources increases. We prove in §5.5 that, at

least when endowments are equal, FL approximates efficiency.
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7.2 Sharing Incentives
We define the sharing index of agent i to be the ratio between the number of high-valued resources

agent i receives under FL and under static allocations. In §5.4, we show that FL guarantees that the

sharing index of each agent is always at least 0.5. In practice, however, our simulations show that

the sharing index is much higher.

Figure 6 shows the sharing index for all agents in the Google cluster traces, sorted in increasing

order and shown on a log scale. The minimum sharing index across all agents is 0.98, and on

average agents receive 15x more utility under FL compared to static allocations. As can be seen,

there is high variance in sharing index across agents. Agents with high index are those who have

zero demand at most of the rounds and very high demand at a few rounds. These agents benefit

the most from sharing. When they have zero demand, they do not spend any tokens. Once they

have a high demand they spend their tokens to receive the resources they need.

Figure 7 shows agents’ sharing index for an instance with random demands. Since agents do

not have correlated demands, the variance in sharing index is significantly lower compared to the

Google cluster traces. Moreover, across all agents over 100 random instances, we do not observe a

single violation of SI (i.e. no agent has a sharing index less than 1)

8 RELATEDWORK
There is a body of work in the mechanism design without money literature that is related to our

work. Gorokh et al. [18] consider a setting where a single item is to be allocated repeatedly, and

extend to more general settings in a follow-up paper [19]. They do so by endowing each user with

a fixed amount of artificial currency and then treating it similarly to if it were real money. They

show that, for a large enough number of rounds, incentives to misreport and welfare loss both

vanish. However, their notion of strategy-proofness is ex-ante Bayesian, requiring users (and the

mechanism) to know the distribution from which other users’ demands are drawn and truthful

reporting is optimal only in expectation. Our notion of SP is ex-post, meaning that an agent never

regrets truthful reporting.

Various other work does not explicitly use artificial currency, but by keeping track of how much

utility an agent should receive in the future, achieve guarantees in a way that resembles the use of

artificial currency [6, 9, 21]. Again, these results are for a weaker notion of SP.

In a similar setting, Aleksandrov et al. [7, 8] consider a stream of resources arriving one at a

time that must be allocated among competing strategic agents. They consider two mechanisms,

one of which is similar to SMM and the other similar to DMM. They obtain both positive and

negative results for these mechanisms, however their positive results are primarily obtained for

the case where agent utilities are 0 or 1, corresponding to our L = 0 case. They also consider only

the symmetric agent setting, rather than our setting that allows unequal endowments.

There also exists literature on dynamic fair division [14, 23, 34], but this work predominantly

focuses on agents arriving and departing over time, rather than the preferences themselves being

dynamic, as in our work.

In the systems literature, in recent years, there has been a growing body of work on using

economic game-theory to allocate resources [16, 35, 36]. These works only consider one-shot

allocations and do not study allocations over time. Ghodsi et al. [15] consider dynamic allocations

over time but in a completely different allocation setting than ours. Their proposed mechanism

allocates resources to packets in a queue. In such a setting, time cannot be divided into fixed

intervals, because processing packets take different times, which means a packet could stall all

other packets until its processed. As a result, proportional allocations have to be approximated

through discrete packet scheduling decisions [13, 26].
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In a work that is close to our setting, Tang et al. [30] propose a dynamic allocation policy that

resembles DMM. We study the characteristics of DMM in §3 and evaluate its performance in §7.

Another related work in this area is that of Sandholm and Lai [28]. The authors propose a scheduler

that allocates resources between users with dynamically changing demands. This work deploys

heuristics and does not provide any theoretical guarantees that we study in this paper.

9 CONCLUSION
We have considered the problem of designing mechanisms for dynamic proportional sharing

in a high-low utility model that both incentivize users to participate and share their resources

(sharing incentives), as well as truthfully report their resource requirements to the system (strategy-

proofness). We show that while each of these properties is incompatible with full efficiency, it is

possible to satisfy both of them and still obtain some efficiency gains from sharing.

The main mechanism that we present, the flexible lending mechanism, is strategy-proof and

provides each user a theoretical guarantee of at least half her sharing incentives share. While we

do not guarantee full sharing incentives, we show via simulations on both real and synthetic data

that in practical situations, no users are significantly worse off by participating in the sharing

scheme (and the majority are vastly better off). We show that under certain assumptions, the

flexible lending mechanism provides full efficiency in the large round limit, which is supported

by our simulation results. By incentivizing truthful reporting, we posit that the flexible lending

mechanism will in fact produce significant efficiency gains in settings where agents are strategic.

Many directions for future work remain. The 2-Period mechanism fully satisfies both SP and

SI, but remains very inflexible in its allocations. A key challenge is the design of a more flexible

mechanism that satisfies both properties (or some upper bound on the efficiency that such mecha-

nisms can achieve). Another direction is to extend the utility model. The high/low model is crucial

to the positive strategic results that we obtain because trade-offs are well-defined: swapping an L
resource for an H resource is always bad. Even introducing a medium (M) value complicates the

situation considerably, and extending to such a setting would represent an exciting step forward.
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A OMITTED PROOFS
A.1 Proof of Lemma 14
We use the characterization of the FL mechanism allocations from Lemma 13. We consider four

cases, corresponding to whether or not supply exceeds demand in the truthful and misreported

instances. Let x ′ denote the objective value in the FL mechanism’s call to PSWC in the misreported

instance, and x in the truthful instance. Suppose first that Dr ≥ E and D ′r ≥ E. Suppose that x ′ ≤ x .
Then, for all j , i ,

a′j,r = min(x ′ej ,dj,r , t
′
j,r ) ≤ min(xej ,dj,r , tj,r ) = aj,r ,

which implies that a′i,r ≥ ai,r , since
∑

k ∈[n]
ak,r ′ =

∑
k ∈[n]

a′k,r ′ . On the other hand, if x ′ > x , then

a′i,r = min(x ′ei ,di,r , t
′
i,r ) ≥ min(xei ,di,r , ti,r ) = ai,r .

Second, suppose that Dr ≥ E and D ′r < E. Then

a′i,r ≥ min(di,r , t
′
i,r ) ≥ min(di,r , ti,r ) ≥ ai,r .

Third, suppose that Dr < E and D ′r ≥ E. Then

a′j,r ≤ min(dj,r , t
′
j,r ) ≤ min(dj,r , tj,r ) ≤ aj,r

for all j , i , which implies that a′i,r ≥ ai,r . Finally, suppose that Dr < E and D ′r < E. If x ′ ≤ x , then
for all j , i , we have that

a′j,r = min(t ′j,r ,max(dj,r ,x
′ej )) ≤ min(tj,r ,max(dj,r ,xej )) = aj,r ,

which implies that a′i,r ≥ ai,r . If x
′ > x , then

a′i,r = min(t ′i,r ,max(di,r ,x
′ei )) ≥ min(ti,r ,max(di,r ,xei )) = ai,r .

Thus, the lemma holds in all cases.

A.2 Proof of Lemma 27
If D ≥ E, substituting the relevant terms into Lemma 11 gives us the following.

ai,r = max(0,min(min(d ′i,r , ei + bi ),xei )) = min(ei + bi ,d
′
i,r ,xei ).

If D < E, then again by substituting into Lemma 11 we have the following.

ai,r = max(min(ei + bi ,d
′
i,r ),min(ei + bi ,xei )) = min(ei + bi ,max(d ′i,r ,xei )).

The final equality, max(min(A,B),min(A,C )) = min(A,max(B,C )), can easily be checked to hold

case by case for any relative ordering of A, B, and C .
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A.3 Proof of Lemma 28
If r > T , then the allocation of agent i is independent of her reported demand, thus ai,r = a′i,r . Now

suppose that r ≤ T . Let ¯di,r = min(di,r , ei + bi,r ) and ¯d ′i,r = min(d ′i,r , ei + bi,r ). Also, let x and x ′

denote the objective value in the T -period mechanism’s call to PSWC when i reports di,r and d
′
i,r ,

respectively. Observe first that D ′ = ¯d ′i,r +
∑

j,i
¯dj,r ≤ ¯di,r +

∑
j,i

¯dj,r = D.
Suppose first that E ≤ D ′ ≤ D. Let aj,r and a

′
j,r denote the allocations of j/not = i when i reports

di,r and d
′
i,r , respectively. If x

′ ≥ x , then for all j , i , by Lemma 27 we have:

a′j,r = min(ej + bj,r ,dj,r ,x
′ej ) ≥ min(ej + bj,r ,dj,r ,xej ) = aj,r .

This immediately implies that a′i,r ≤ ai,r , because
∑

k ∈[n]
ak,r =

∑
k ∈[n]

a′k,r = E. If x ′ < x , then

again by Lemma 27 we have the following:

a′i,r = min(ei + bi,r ,d
′
i,r ,x

′ei ) ≤ min(ei + bi,r ,di,r ,xei ) = ai,r .

By the same lemma, for all j , i , we also have:

a′j,r = min(ej + bj,r ,dj,r ,x
′ej ) ≤ min(ej + bj,r ,dj,r ,xej ) = aj,r .

Therefore, for all k ∈ [n], ak,r ≥ a′k,r . However, since
∑

k ∈[n]
ak,r =

∑
k ∈[n]

a′k,r = E, it has to be

the case that ak,r = a′k,r for all k .

Next, suppose that D ′ < E ≤ D. By the definition of the T -period mechanism, for all j , i ,
a′j,r ≥

¯dj,r , and aj,r ≤ ¯dj,r . Therefore, a
′
j,r ≥ aj,r which implies that a′i,r ≤ ai,r .

Finally, suppose that D ′ ≤ D < E. If x ′ ≥ x , then by Lemma 27, for all j , i , we have:

a′j,r = min(ej + bj,r ,max(dj,r ,x
′ej )) ≥ min(ej + bj ,max(dj,r ,xej )) = aj,r .

This implies a′i,r ≤ ai,r . If x
′ < x , then, by Lemma 27 we have:

a′i,r = min(ei + bi,r ,max(d ′i,r ,x
′ei )) ≤ min(ei + bi,r ,max(di,r ,xei )) = ai,r

By the same lemma, for all j , i , we also have:

a′j,r = min(ej + bj,r ,max(dj,r ,x
′ej )) ≤ min(ej + bj,r ,max(dj,r ,xej )) = aj,r .

Therefore, for all k ∈ [n], a′k,r ≤ ak,r . However, since
∑

k ∈[n]
ak,r =

∑
k ∈[n]

a′k,r = E, it has to be

the case that ak,r = a′k,r for all k .

A.4 Proof of Lemma 29
Note that D ′ ≤ D, since d ′i,r < di,r and d ′j,r = dj,r for all agents j , i . If E ≤ D, then by the

definition of the T -period mechanism we have:

ai,r ≤ ¯di,r = min(ei + bi ,di,r ) ≤ di,r .

Next, assume that D ′ ≤ D < E. Then a′i,r < ai,r implies that there is at least one agent j
with a′j,r > aj,r . In the proof of Lemma 28 we show that if x ′ < x , then a′k,r = ak,r for all k .

Therefore, it has to be the case that x ′ ≥ x . By Lemma 27, ai,r = min(ei + bi,r ,max(di,r ,xei ))
and a′i,r = min(ei + bi ,max(d ′i,r ,x

′ei )). It is easy to see that if di,r < xei , then a′i,r ≥ ai,r , which
contradicts the assumption in the lemma statement. Therefore, we have:

ai,r = min(ei + bi ,max(di,r ,xei )) = min(ei + bi ,di,r ) ≤ di,r .

A.5 Proof of Corollary 30
Because a′i,r < ai,r ≤ di,r , we can substitute the utility values from Equation (2),

ui,r (ai,r ) − ui,r (a
′
i,r ) = ai,rH − a

′
i,rH = H (ai,r − a

′
i,r ).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 3. Publication date: March 2018.



Dynamic Proportional Sharing: A Game-Theoretic Approach 3:31

A.6 Proof of Lemma 31
Note that D ′ ≥ D, since d ′i,r > di,r and d ′j,r = dj,r for all agents j , i . If D < E, then ai,r ≥
¯di,r = min(ei + bi,r ,di,r ). We show that ei + bi,r ≥ di,r , and therefore, ai,r ≥ di,r . Suppose for
contradiction that ei + bi,r < di,r < d ′i,r , which means

¯di,r = ¯d ′i,r = ei + bi,r . By definition of the

T -period mechanism,
¯di,r ≤ ai,r ≤ ei + bi,r , which implies ai,r = ei + bi,r . Also, by the definition

of the mechanism, a′i,r ≤
¯d ′i,r = ei + bi,r if D

′ ≥ E, and a′i,r ≤ ei + b
′
i,r = ei + bi,r if D

′ < E. In both

cases, a′i,r ≤ ei + bi,r = ai,r , a contradiction to the assumption in the lemma statement.

If D ′ ≥ D ≥ E, then a′i,r > ai,r implies that there is at least an agent j with a′j,r < aj,r . In the

proof of Lemma 28 we show that if x < x ′, then a′k,r = ak,r for all k . Therefore, it has to be the

case that x ≥ x ′. By Lemma 27, ai,r = min(ei + bi,r ,di,r ,xei ) and a
′
i,r = min(ei + bi,r ,d

′
i,r ,x

′ei ). It
is easy to see that if ai,r is xei or ei + bi,r , then a′i,r ≤ ai,r . Therefore, ai,r = di,r , which means the

lemma holds.

A.7 Proof of Corollary 32
Because di,r ≤ ai,r < a′i,r , we can substitute the utility values from Equation (2),

ui,r (a
′
i,r ) − ui,r (ai,r ) = di,rH + (a′i,r − di,r )L − (di,rH + (ai,r − di,r )L) = L(a′i,r − ai,r ).

A.8 Proof of Lemma 33
Suppose first that agent i reports d ′i,T < di,T . Then, by Lemma 28, a′i,T ≤ ai,T . If a

′
i,T = ai,T , then

the misreport has had no effect on the allocations, since the allocation at rounds r ≤ T is unchanged,

and the allocations at rounds r > T depend only on the allocations at rounds r ≤ T , not the reports.
So assume that a′i,T = ai,T − k for some k > 0. By the definition of the T -Period mechanism, i’s

allocation increases by
k
T for each of rounds T + 1, . . . , 2T . The difference between her utility from

truthfully reporting at round T and from misreporting at round T is given by

Ui,R (ai) −Ui,R (a′i ) =
R∑
r=1

(
ui,r (ai,r ) − ui,r (a

′
i,r )

)
= ui,T (ai,T ) − ui,T (a

′
i,T ) +

2T∑
r=T+1

(
ui,r (ai,r ) − ui,r (a

′
i,r )

)
= kH +

2T∑
r=T+1

(
ui,r (ai,r ) − ui,r (ai,r +

k

T
)

)
≥ kH − kH = 0

where the second transition follows because d ′i,r = di,r for all rounds r < T , the third transition

from Corollary 30, and the final transition because each of the extra resources received in the

misreported case for rounds r > T can each be worth at most H to i .
Next suppose that agent i reports d ′i,T > di,T . Then, by Lemma 28, a′i,T ≥ ai,T . As before, assume

that a′i,T , ai,T . That is, a
′
i,T = ai,T +k for some k > 0. By the definition of theT -Period mechanism,

i’s allocation decreases by
k
T for each of rounds T + 1, . . . , 2T . The difference between her utility
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from truthfully reporting at round T and from misreporting at round T is given by

Ui,R (ai) −Ui,R (a′i ) =
R∑
r=1

(
ui,r (ai,r ) − ui,r (a

′
i,r )

)
= ui,T (ai,T ) − ui,T (a

′
i,T ) +

2T∑
r=T+1

(
ui,r (ai,r ) − ui,r (a

′
i,r )

)
= −kL +

2T∑
r=T+1

(
ui,r (ai,r ) − ui,r (ai,r −

k

T
)

)
≥ −kL + kL = 0

where the second transition follows because d ′i,r = di,r for all rounds r < T , the third transition

from Corollary 32, and the final transition because each of the extra resources received in the

truthful case for rounds r > T are each worth at least L to i .

A.9 Proof of Lemma 35
We treat four cases, corresponding to whether or not supply exceeds demand in the truthful

and misreported instances. Let x ′ denote the objective value in the T -Period mechanism’s call to

PSWC in the misreported instance, and x in the truthful instance. All cases rely heavily on the

characterization of the allocation from Lemma 27.

Suppose first that Dr ≥ E and D ′r ≥ E. Suppose that x ′ ≤ x . Then, for all j , i , a′j,r =

min(x ′ej ,dj,r , ej + b ′j,r ) ≤ min(xej ,dj,r , ej + bj,r ) = aj,r , which implies that a′i,r ≥ ai,r , since∑
k ∈[n]

ak,r ′ =
∑

k ∈[n]
a′k,r ′ . On the other hand, if x ′ > x , then a′i,r = min(x ′ei ,di,r , ei + b

′
i,r ) ≥

min(xei ,di,r , ei + bi,r ) = ai,r . Second, suppose that Dr ≥ E and D ′r < E. Then a′i,r ≥ min(di,r , ei +
b ′i,r ) ≥ min(di,r , ei+bi,r ) ≥ ai,r ). Third, suppose thatDr < E andD ′r ≥ E. Then a′j,r ≤ min(dj,r , ej+

b ′j,r ) ≤ min(dj,r , ej + bj,r ) ≤ aj,r for all j , i , which implies that a′i,r ≥ ai,r .

Finally, suppose that Dr < E and D ′r < E. If x ′ ≤ x , then for all j , i , we have that a′j,r =

min(ej + b
′
j,r ,max(dj,r ,x

′ej )) ≤ min(ej + bj,r ,max(dj,r ,xej )) = aj,r , which implies that a′i,r ≥ ai,r .

If x ′ > x , then a′i,r = min(ei +b
′
i,r ,max(di,r ,x

′ei )) ≥ min(ei +bi,r ,max(di,r ,xei )) = ai,r . Thus, the
lemma holds in all cases.

A.10 Proof of Proposition 37
Let r ≤ T . First suppose that D < E. Then i’s minimum allocation is

¯di,r = min(d ′i,r , ei + bi,r ) = ei .
So we know that ai,r ≥ ei . Suppose for contradiction that ai,r > ei . Then there must be some agent

j , i with aj,r ≤ ej . But nowwe could obtain a smaller value of x in the PSWC program by assigning

slightly higher allocation to j , and slightly lower allocation to any agent with ak,r /ek = x (we know

that j is not one of these agents since aj,r /ej < 1 < ai,r /ei ≤ x ). This contradicts optimality of the

PSWC program, therefore ai,r = ei .
Next, suppose that D ≥ E. Then i’s limit allocation is

¯di,r = min(d ′i,r , ei + bi,r ) = ei . So we know

that ai,r ≤ ei . Suppose for contradiction that ai,r < ei . Then there must exist some agent j with
aj,r > ej . But now the objective value x of the call to PSWC could be improved by transferring

some small amount of allocation to i from all agents k with ak,r /ek = x (we know that i is not one
of these agents since ai,r /ei < 1 < aj,r /ej ≤ x ). This contradicts optimality of the PSWC program,

therefore ai,r = ei .

B OVER-REPORTING DEMAND IS NOT ADVANTAGEOUS
In this section we assume that d ′i,r ′ > di,r ′ . The setup otherwise mirrors that of §5.3.

Lemma 40. For all agents j , i , we have that a′j,r ′ ≤ aj,r ′ . Further, a′i,r ′ ≥ ai,r ′ .
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Proof. We prove the statement for all j , i . The statement for i follows immediately because

the total number of resources to allocate is fixed.

Observe first that

Dr ′ =
∑
k ∈[n]

min(dk,r ′, tk,r ′ ) ≤
∑
k ∈[n]

min(d ′k,r ′, tk,r ′ ) = D ′r ′,

since i’s demand increases in the misreported instances but all other demands and token counts

stay the same. Let x ′ denote the objective value in FL’s call to PSWC in the misreported instance,

and x in the truthful instance.

Suppose that E ≤ Dr ′ ≤ D ′r ′ . Suppose first that x
′ < x . Then, by Lemma 13,

aj,r ′ = min(xej ,dj,r ′, tj,r ′ ) ≥ min(x ′ej ,dj,r ′, tj,r ′ ) = a′j,r ′

for all j , i . Next, suppose that x ′ ≥ x . Then, again by Lemma 13 and the fact that d ′i,r ′ > di,r ′ ,

a′i,r ′ = min(x ′ei ,d
′
i,r ′, ti,r ′ ) ≥ min(xei ,di,r ′, ti,r ′ ) = ai,r ′ .

And, for all j , i ,

a′j,r ′ = min(x ′ej ,dj,r ′, tj,r ′ ) ≥ min(xej ,dj,r ′, tj,r ′ ) = aj,r ′ .

Because a′k,r ′ ≥ ak,r ′ for all users k , and
∑

k ∈[n]
ak,r ′ =

∑
k ∈[n]

a′k,r ′ , it must be the case that

a′k,r ′ = ak,r ′ for all k , which satisfies the statement of the lemma.

Next, suppose that Dr ′ < E ≤ D ′r ′ . By the definition of FL, ak,r ′ ≥ min(dk,r ′, tk,r ′ ) for all k , and
a′k,r ′ ≤ min(d ′k,r ′, tk,r ′ ) for all k . Since min(d ′j,r ′, tj,r ′ ) = min(dj,r ′, tj,r ′ ) for all j , i , we have that

aj,r ′ ≥ a′j,r ′ , implying also that ai,r ′ ≤ a′i,r ′ .

Finally, suppose that Dr ′ ≤ D ′r ′ < E. Suppose first that x ≤ x ′. Then, by Lemma 13 and the

assumption that di,r ′ < d ′i,r ′ , we have

ai,r ′ = min(ti,r ′,max(xei ,di,r ′ )) ≤ min(ti,r ′,max(x ′ei ,d
′
i,r ′ )) = a′i,r ′

and

aj,r ′ = min(tj,r ′,max(xej ,dj,r ′ )) ≤ min(tj,r ′,max(x ′ej ,dj,r ′ )) = a′j,r ′

for all j , i . Because ak,r ′ ≤ a′k,r ′ for all users k , and
∑

k ∈[n]
a′k,r ′ =

∑
k ∈[n]

ak,r ′ , it must be the case

that ak,r ′ = a′k,r ′ for all k , which satisfies the lemma statement. Next, suppose that x > x ′. Then,

again by Lemma 13, for all j , i , we have

aj,r ′ = min(tj,r ′,max(xej ,dj,r ′ )) ≥ min(tj,r ′,max(x ′ej ,dj,r ′ )) = a′j,r ′ .

□

If it is the case that a′i,r ′ = ai,r ′ , then it must also be that a′j,r ′ = aj,r ′ for all j , i . So allocations

at round r ′ are the same in the misreported instance as the truthful instance. Therefore, for all

rounds r ≤ r ′, allocations in both universes are the same. In all rounds r > r ′, reports in both

universes are the same. Together, these imply that allocations for all rounds r > r ′ are the same in

both universes. In particular, i does not profit from her misreport and could weakly improve her

utility by reporting d ′i,r ′ = di,r ′ . So, for the remainder of this section, we assume that a′i,r ′ > ai,r ′ .
Our next lemma says that the additional resources that i receives in round r ′ are low valued

resources for her. The intuition is that if it were the case that i was receiving only high-valued

resources under truthful reporting, then she will not receive any extra resources by misreporting

(since no agent donates any additional resources for i to receive).

Lemma 41. If a′i,r ′ > ai,r ′ , then ai,r ′ ≥ di,r ′ .
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Proof. Suppose for contradiction that ai,r ′ < di,r ′ . We also know that ai,r ′ < a′i,r ′ ≤ t ′i,r ′ = ti,r ′ ,
where the equality holds because allocations before round r ′ are identical in the truthful and

misreported instances. It must therefore be the case that D ′r ′ ≥ Dr ′ > E, where the first inequality
holds becaused ′j,r ′ = dj,r ′ for all j , i andd

′
i,r ′ > di,r ′ , and the second because ai,r ′ < min(ti,r ′,di,r ′ ).

Let x denote the objective value of FL’s call to PSWC in the truthful instance, and x ′ in the

misreported instance. Suppose that x ≤ x ′. Then, by Lemma 13 and the assumption that di,r ′ < d ′i,r ′ ,

ai,r ′ = min(ti,r ′,xei ,di,r ′ ) ≤ min(ti,r ′,x
′ei ,d

′
i,r ′ ) = a′i,r ′,

and for all j , i
aj,r ′ = min(tj,r ′,xej ,dj,r ′ ) ≤ min(tj,r ′,x

′ej ,dj,r ′ ) = a′j,r ′ .

Because ak,r ′ ≤ a′k,r ′ for all agents k , and
∑

k ∈[n]
ak,r ′ =

∑
k ∈[n]

a′k,r ′ , it must be the case that

a′k,r ′ = ak,r ′ for all k . This contradicts the assumption that ai,r ′ < a′i,r ′ .

Now suppose that x > x ′. Note that xei < di,r ′ < d ′i,r ′ , where the first inequality holds because

ai,r ′ < min(ti,r ′,di,r ′ ). Then, again by Lemma 13 and the previous observation, we have

a′i,r ′ = min(ti,r ′,x
′ei ,d

′
i,r ′ ) ≤ min(ti,r ′,xei ,di,r ′ ) = ai,r ′,

which contradicts that ai,r ′ < a′i,r ′ .
Since we arrive at a contradiction in all cases, the lemma statement must be true. □

As a corollary, we can write the difference in utility between the truthful and misreported

instances that i derives from round r ′.

Corollary 42. ui,r ′ (a
′
i,r ′ ) − ui,r ′ (ai,r ′ ) = L(a′i,r ′ − ai,r ′ ).

Proof. Because di,r ′ ≤ ai,r ′ < a′i,r ′ , we can substitute the utility values from Equation (2):

ui,r ′ (a
′
i,r ′ ) − ui,r ′ (ai,r ′ ) = di,r ′H + (a′i,r ′ − di,r ′ )L − di,r ′H − (a′i,r − di,r ′ )L = L(a′i,r ′ − ai,r ′ ).

□

For a fixed agent k , denote by r ′k the round at which agent k runs out of tokens in the misreported

universe. That is, r ′k is the first (and only) round with a′rk = t ′k,rk
> 0. Note that r ′i ≥ r ′, since

a′i,r ′ > 0. Given this, our next lemma states that, under certain conditions, the effect of i’s misreport,

d ′i,r > di,r , is to decrease the objective value of FL’s call to PSWC.

Lemma 43. Let r < r ′i (i.e. a
′
i,r < t ′i,r ). Suppose tj,r ≤ t ′j,r for all agents j , i . Suppose that either

min(Dr ,D
′
r ) ≥ E or max(Dr ,D

′
r ) < E. Then x ′ ≤ x , where x ′ denotes the objective value of FL’s call

to PSWC in the misreported instance and x in the truthful instance.

Proof. First, suppose that min(Dr ,D
′
r ) ≥ E. Suppose for contradiction that x < x ′. By Lemma

13,

aj,r = min(xej ,dj,r , tj,r ) ≤ min(x ′ej ,dj,r , t
′
j,r ) = a′j,r

for all j , i , where the inequality follows from the assumption that x < x ′ and that tj,r ≤ t ′j,r .
Further,

ai,r = min(xei ,di,r , ti,r ) ≤ min(xei ,di,r ) ≤ min(x ′ei ,di,r )

= min(x ′ei ,di,r , t
′
i,r ) = a′i,r ,

where the second inequality follows from the assumption that x < x ′ and the second to last equality
from the assumption a′i,r < t ′i,r .

Therefore, ak,r ≤ a′k,r for all agents k . Since
∑
a′k,r =

∑
ak,r , it must be the case that a′k,r = ak,r

for all agents k . Therefore, by the definition of FL, a′k,r /ek ≤ x < x ′ for all agents k with a′k,r >
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mk = 0. Therefore x ′ is not the optimal objective value of the PSWC program in the misreported

instance, a contradiction. Thus, x ≥ x ′.
Next, suppose that max(Dr ,D

′
r ) < E. Suppose for contradiction that x < x ′. By Lemma 13,

aj,r = min(tj,r ,max(xej ,dj,r )) ≤ min(t ′j,r ,max(x ′ej ,dj,r )) = a′j,r

for all j , i , where the inequality follows from the assumption that x < x ′ and that tj,r ≤ t ′j,r .
Further,

ai,r = min(ti,r ,max(xei ,di,r )) ≤ max(xei ,di,r ) ≤ max(x ′ei ,di,r )

= min(t ′i,r ,max(x ′ei ,di,r )) = a′i,r ,

where the second inequality follows from the assumption that x < x ′ and the second to last equality
from the assumption a′i,r < t ′i,r .

Therefore, ak,r ≤ a′k,r for all agents k . Since
∑
a′k,r =

∑
ak,r , it must be the case that a′k,r = ak,r

for all agents k . Consider all agents with min(dk,r , t
′
k,r ) < a′k,r (that is, those agents for which the

first constraint in the PSWC program binds in the misreported instance). For all such agents, we

have

min(dk,r , t
′
k,r ) < a′k,r =⇒ dk,r < a′k,r ≤ t ′k,r =⇒ dk,r < ak,r ≤ tk,r =⇒ min(dk,r , tk,r ) < ak,r ,

so the constraints bind in the truthful instance as well. Therefore, ak,r /ek ≤ x < x ′ for all agents k
for which the first constraint binds in the misreported instance. Therefore x ′ is not the optimal

objective value of the PSWC program in the misreported instance, a contradiction. Thus, x ≥ x ′. □

Using Lemma 43, we show our main lemma. It allows us to make an inductive argument that,

after gaining some extra resources in round r ′, i’s allocation is (weakly) smaller for all other rounds

in the mireported instance than the truthful instance.

Lemma 44. Let r ′ < r < r ′i (that is, a
′
i,r < t ′i,r ). Suppose that tj,r ≤ t ′j,r for all agents j , i . Then

for all j , i , either: (1) aj,r = tj,r , or (2) aj,r ≥ a′j,r .

Proof. Note that tj,r ≤ t ′j,r for all j , i implies that ti,r ≥ t ′i,r , which we use in the proof. Also,

because r ′ < r , we know that d ′i,r = di,r , as r
′
is the last round for which d ′i,r , di,r . We assume

that condition 1) from the lemma statement is false (i.e. aj,r < tj,r ) and show that condition 2)

must hold. Suppose first that D ′r < E. Then, because a′i,r < t ′i,r , we know that d ′i,r ≤ t ′i,r ≤ ti,r .
This implies that min(di,r , t

′
i,r ) = min(di,r , ti,r ) = di,r . Let j , i . Since tj,r ≤ t ′j,r , we have

min(dj,r , tj,r ) ≤ min(dj,r , t
′
j,r ). Therefore, it is the case that Dr ≤ D ′r < E. By Lemma 13 and the

assumption that aj,r < tj,r , it must be the case that aj,r = max(dj,r ,xej ). Further, by Lemma 43, we

know that x ≥ x ′. Therefore, we have

a′j,r = max(dj,r ,x
′ej ) ≤ max(dj,r ,xej ) = aj,r .

That is, condition (2) from the lemma statement holds.

Now suppose that D ′r ≥ E. Then, from the definition of the mechanism, we have that a′j,r ≤

min(dj,r , t
′
j,r ) ≤ dj,r . If it is the case that Dr < E then we have that aj,r ≥ min(dj,r , tj,r ) = dj,r ,

where the equality holds because otherwise we would have aj,r ≥ min(dj,r , tj,r ) = tj,r , violating
the assumption that aj,r < tj,r . Using these inequalities, we have aj,r ≥ dj,r ≥ a′j,r , so condition (2)

from the statement of the lemma holds. Finally, it may be the case that D ′r ≥ M and Dr ≥ M . By

Lemma 13 and the assumption that aj,r < tj,r , we have

aj,r = min(dj,r ,xek ) ≥ min(dj,r ,x
′ek ) = a′j,r ,

where the inequality follows from Lemma 43. Thus, condition (2) of the lemma statement holds. □
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We now show an analogous result to Lemma 14.

Lemma 45. Suppose that tj,r ≤ t ′j,r for all j , i , and dk,r = d
′
k,r for all k ∈ [n]. Then ai,r ≥ a′i,r .

Proof. Note that the condition that tj,r ≤ t ′j,r for all j , i implies that ti,r ≥ t ′i,r . We use these

assumptions, along with the characterization of the FL mechanism allocations from Lemma 13, to

prove the lemma.

We treat four cases, corresponding to whether or not supply exceeds demand in the truthful and

misreported instances. Let x ′ denote the objective value in the FL mechanism’s call to PSWC in

the misreported instance, and x in the truthful instance. Suppose first that D ′r ≥ E and Dr ≥ E.
Suppose that x ≤ x ′. Then, for all j , i , aj,r = min(xej ,dj,r , tj,r ) ≤ min(x ′ejdj,r , t

′
j,r ) = a′j,r ,

which implies that ai,r ≥ a′i,r , since
∑

k ∈[n]
a′k,r ′ =

∑
k ∈[n]

ak,r ′ . On the other hand, if x > x ′, then

ai,r = min(xei ,di,r , ti,r ) ≥ min(x ′ei ,di,r , t
′
i,r ) = a′i,r . Second, suppose that D

′
r ≥ E and Dr < E.

Then ai,r ≥ min(di,r , ti,r ) ≥ min(di,r , t
′
i,r ) ≥ a′i,r ). Third, suppose that D

′
r < E and Dr ≥ E. Then

aj,r ≤ min(dj,r , tj,r ) ≤ min(dj,r , t
′
j,r ) ≤ a′j,r for all j , i , which implies that ai,r ≥ a′i,r .

Finally, suppose that D ′r < E and Dr < E. If x ≤ x ′, then for all j , i , we have that aj,r =
min(tj,r ,max(dj,r ,xej )) ≤ min(t ′j,r ,max(dj,r ,x

′ej )) = a′j,r , which implies that ai,r ≥ a′i,r . If x > x ′,

then ai,r = min(ti,r ,max(di,r ,xei )) ≥ min(t ′i,r ,max(di,r ,x
′ei )) = a′i,r . Thus, the lemma holds in

all cases. □

Finally, we show that the mechanism is strategy-proof.

Theorem 46. Agent i never benefits from reporting di,r ′ > di,r ′ .

Proof. We first observe that for every r ≤ r ′i , tj,r ≤ t ′j,r for every j , i . This is true for every

r ≤ r ′ because a′j,r = aj,r for r < r ′, by Lemma 15. For r = r ′ + 1, it follows from Lemma 40, which

says that aj,r ′ ≥ a′j,r ′ . For all subsequent rounds, up to and including r = r ′i , it follows inductively

from Lemma 44: tj,r ≤ t ′j,r implies that either aj,r = tj,r (in which case tj,r+1 = 0 ≤ t ′j,r+1
), or

aj,r ≥ a′j,r (in which case tj,r+1 = tj,r − aj,r ≤ t ′j,r − a
′
j,r = t ′j,r+1

).

Consider an arbitrary round r , r ′, with r ≤ r ′i . By the above argument, we know that tj,r ≤ t ′j,r
for all j , i . Further, because reports in the truthful and misreported instances are identical on all

rounds r , r ′, we have that dk,r = d ′k,r for all k ∈ [n]. Therefore, by Lemma 45, ai,r ≥ a′i,r . For

rounds r > r ′i , it is also true that ai,r ≥ a′i,r , since a
′
i,r = 0 for these rounds by the definition of r ′i .

Finally,

Ui,R (ai) −Ui,R (a′i ) =
R∑
r=1

(ui,r (ai,r ) − ui,r (a
′
i,r ))

=
∑
r,r ′

(ui,r (ai,r ) − ui,r (a
′
i,r )) + (ui,r ′ (ai,r ′ ) − ui,r ′ (a

′
i,r ′ ))

=
∑
r,r ′

(ui,r (ai,r ) − ui,r (a
′
i,r )) − L(a

′
i,r ′ − ai,r ′ )

≥ L(a′i,r ′ − ai,r ′ ) − L(a
′
i,r ′ − ai,r ′ ) = 0

Where the third transition follows from Corollary 42, and the final transition because

∑
r,r ′ (a

′
i,r −

ai,r ) = ai,r ′ − a
′
i,r ′ , and every term in the sum is positive. □
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