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Abstract
We consider the allocation of homogeneous divisi-
ble goods to agents with linear additive valuations.
Our focus is on the case where some agents are se-
cretive and reveal no preference information, while
the remaining agents reveal full preference infor-
mation. We study distortion, which is the worst-
case approximation ratio when maximizing social
welfare given such partial information about agent
preferences. As a function of the number of se-
cretive agents k relative to the overall number of
agents n, we identify the exact distortion for every
p-mean welfare function, which includes the utili-
tarian welfare (p = 1), the Nash welfare (p → 0),
and the egalitarian welfare (p→ −∞).

1 Introduction
We study a resource allocation problem in which divisible
goods must be allocated to agents with linear additive valua-
tions.1 Treating goods as divisible captures cases where they
are inherently divisible (such as land or food), and where they
are indivisible (such as jewelry or artwork) but can be allo-
cated randomly or timeshared. Formally, an allocation is a
matrix x, where xi,j ∈ [0, 1] is the fraction of resource j
given to agent i and

∑
i xi,j = 1 for all j. The preferences

of agent i are given by a valuation function vi such that her
utility from allocation x is vi(xi) =

∑
j vi(j) · xi,j .

A classic solution is to allocate the resources in a way that
maximizes some social welfare function, which maps the util-
ities of the agents to a single aggregate measure of alloca-
tion quality. Common examples include the utilitarian wel-
fare ( 1

n

∑
i vi(xi)), the Nash welfare ((

∏
i vi(xi))

1/n
), and

the egalitarian welfare (mini vi(xi)), where n is the number
of agents. In fact, these are members of the broader class of
p-mean welfare functions, given by ( 1

n

∑
i vi(xi)

p)1/p, with
p = 1, p→ 0, and p→ −∞ respectively.

When we have complete information about the valuation
function of each agent, finding an allocation that maximizes
social welfare is conceptually trivial (algorithmically, how-
ever, some welfare functions may be challenging to maxi-

1We discuss allocation of indivisible goods in the full version:
https://www.cs.toronto.edu/∼nisarg/papers/secretive.pdf

mize [Lee, 2017; Garg et al., 2021; Bezáková and Dani, 2005;
Asadpour and Saberi, 2010]). But when we have only par-
tial information, it is less clear what outcomes are prescribed
by the social welfare maximization paradigm. One approach
in the literature is to consider the distortion, which is the
worst-case approximation ratio of the maximum social wel-
fare that could be achieved with full information to the social
welfare achieved by the allocation rule given partial infor-
mation. Distortion can be viewed as the “price” of missing
information, and minimizing distortion provably reduces the
(worst-case) impact that the missing information has on the
solution quality. Distortion was originally defined by Procac-
cia and Rosenschein [2006] in the context of voting, where it
has led to an extensive literature of follow-up work; we point
the reader to the recent survey by Anshelevich et al. [2021]
for a summary. The approach has since been applied to
other settings including matching [Amanatidis et al., 2021;
Ma et al., 2021; Anshelevich and Zhu, 2021] and resource
allocation [Halpern and Shah, 2021].

Traditionally, the distortion framework has been applied
when every agent reports ordinal preferences [Boutilier et al.,
2015; Anshelevich et al., 2018; Halpern and Shah, 2021].
In this paper, we introduce and study a different model, in
which some agents provide complete cardinal valuation func-
tions while others provide no information. We term the lat-
ter agents secretive agents. In practice, agents may be se-
cretive because they do not want to disclose their valua-
tions for privacy reasons, or because they are simply un-
responsive to requests for information. For example, on a
popular resource allocation website Spliddit.org, more than
10% of the goods division instances did not succeed because
at least one user did not submit their valuation function.2
Prior work in resource allocation has considered secretive
agents [Asada et al., 2018; Frick et al., 2019; Chèze, 2019;
Arunachaleswaran et al., 2019], but these focus on guaran-
teeing certain fairness properties in the presence of secretive
agents, not on welfare maximization or distortion. Further,
unlike in our work, none of them allow more than a single
agent to be secretive because guaranteeing the fairness prop-
erties they seek becomes trivially impossible in this case.

In the presence of one or more secretive agents, it is not a
priori clear what a “good” allocation looks like. On the one

2For chore division instances, it was even higher at over 32%.

https://www.cs.toronto.edu/~nisarg/papers/secretive.pdf
Spliddit.org


hand, if we assign any good to a secretive agent, she might
turn out to have very low value for that good, resulting in the
good effectively being wasted. On the other hand, if we allo-
cate nothing to the secretive agents, we run the risk of facing
high distortion due to instances where the secretive agents are
the key to achieving high welfare. How do we balance these
considerations? Should we allocate any resources to the se-
cretive agents? If so, how do we determine how much of a re-
source should be allocated to the secretive agents? We answer
these questions by identifying worst-case optimal allocation
rules, which turn out to be surprisingly simple.

1.1 Our Results
Let n be the number of agents, k of whom are secretive.
We present our results for divisible goods in the main body
and defer the treatment of indivisible goods to the full ver-
sion. For divisible goods, we provide a complete picture of
the exact distortion for all p-mean social welfare functions.
We introduce a family of allocation rules parameterized by
α ∈ [0, 1] and show that all our upper bounds can be achieved
by setting the right value of α as a function of p, n, and k.
Given α, the corresponding rule allocates α fractions of all
the goods to the non-secretive agents in such a way to maxi-
mize their social welfare and splits the remaining 1− α frac-
tion of each good equally among the secretive agents. In each
case, we can obtain an exactly matching lower bound. A sum-
mary of our results is presented in Table 1 and Figure 1 shows
how the distortion varies with p, n, and k.

The distortion naturally increases as the number of secre-
tive agents k increases; for every p, the distortion starts at 1
when k = 0 (full information) and increases to n at k = n
(no information). Interestingly, for p = 1 (the utilitarian wel-
fare), p → 0 (the Nash welfare), and p → −∞ (the egalitar-
ian welfare), the distortion already becomes n at k = n − 1,
meaning that knowing the valuation function of a single agent
is not helpful for these welfare functions, but this is not the
case for intermediate values of p. When k = Θ(n), the dis-
tortion is Θ(n) for p 6 1 and Θ(n)1/p for p > 1. When
k � n, it is worth noting that the distortion for the Nash wel-
fare is ≈ 1 + k lnn/n, which grows linearly in k like for the
utilitarian and egalitarian welfare, but at a lower rate. More
generally, the Nash welfare leads to a surprisingly low distor-
tion; see Figure 1.

Finally, we conduct simulations on synthetic data and real
data from Spliddit.org to evaluate the empirical performance
of our algorithms with respect to the utilitarian social welfare.
While every α ∈ [1/(k+1), 1] is optimal in the worst case, we
find that higher values of α perform better empirically.

1.2 Related Work
In the voting literature, the idea of distortion has been ana-
lyzed under two primary frameworks, distinguished by what
they assume the underlying expressive preference format to
be: the utilitarian framework assumes that voters have utili-
ties for candidates [Boutilier et al., 2015; Caragiannis et al.,
2017; Benadè et al., 2017], while the metric framework as-
sumes that voters have costs for candidates satisfying the tri-
angle inequality [Anshelevich et al., 2018; Gkatzelis et al.,
2020]. Following Halpern and Shah [2021], our work follows

Welfare Distortion with 0 6 k < n Optimal α

Egal. W. k + 1 α = 1
k+1

(−∞, 0) n
1
p

(
(n− k)

1
1−p + k

) p−1
p

α = (n−k)
1

1−p

k+(n−k)
1

1−p

Nash W. n (n− k)
−n−k

n α = n−k
n

(0, 1) n1−
1
p
(
(n− k)1−p + k

) 1
p α = n−k

n

Util. W. k + 1 α ∈ [ 1
k+1 , 1]

(1,∞) (k + 1)
1
p α = 1

Table 1: Summary of results for divisible goods. For k = 0, all
distortion values in the table evaluate to 1. However, for k = n the
correct distortion value is n for p 6 1 and n1/p for p > 1.
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Figure 1: Distortion value with divisible items as a function of p.

the utilitarian framework as it is more applicable to allocating
goods.

Halpern and Shah [2021], like us, assume that agents have
additive cardinal valuations, but they study the case where
every agent reports a ranking of her t most favorite goods.
They analyze the best possible distortion with respect to the
utilitarian social welfare as a function of t in relation to the
number of goods m. In particular, when every agent ranks all
the goods (i.e., t = m), they show that the best possible dis-
tortion (with a randomized rule) is n, which is what one can
achieve with no preference information whatsoever. That is,
they argue that having access to ordinal preference informa-
tion is not helpful for welfare maximization. In contrast, our
distortion bound is better when k 6 n−2, i.e., even when we
have access to the valuation functions of just two agents. In
a sense, this shows the usefulness of eliciting cardinal prefer-
ences as opposed to ordinal preferences in resource allocation
settings.

Finally, we note that the idea of secretive agents is also ex-
plored in the voting literature, albeit with very different mo-
tivations. Borodin et al. [2019, Lemma 4] show that con-
stant metric distortion can be achieved in elections where
any subset of voters that is at least a constant fraction of the
electorate participate and submit ordinal preferences; such a
strong guarantee is known to be impossible to achieve in the
utilitarian framework, but may be possible if the participating
subset of voters is assumed to be drawn at random. Micha
and Shah [2020] study voting rules which have access to the
votes of only a subset of voters, but instead of analyzing the
distortion, their aim is to predict what popular voting rules
would have returned given all the votes. One of their primary

Spliddit.org


motivations is to design voting rules to apply to polls in order
to predict the outcome of an upcoming election.

2 Preliminaries
A resource allocation instance (N ,M,v) consists of a set
of n agents N , a set of m goods M, and a utility profile
v = (v1, . . . , vn), where vi : M → R>0 is the valuation
function of agent i. We normalize the valuations of each agent
i to sum up to one, i.e.,

∑
j∈M vi(j) = 1. This unit-sum

normalization is widely used in welfare maximization [Aziz,
2020].3

Allocations. An allocation is a division of the goods among
the agents, denoted by x = (x1, . . . ,xn), where xi,j is the
fraction of good j allocated to agent i and each good j is
fully allocated (i.e.,

∑
i∈N xi,j = 1 for each j). We consider

the class of linear additive utilities, where the utility of agent
i for her share xi is, with slight abuse of notation, defined as
vi(xi) =

∑
j∈M vi(j) · xi,j .

Welfare functions. A welfare function W aggregates the
utilities to the agents under an allocation x into a single non-
negative real number measuring the efficiency of the alloca-
tion. Following Barman et al. [2020a], we consider the fol-
lowing class of welfare functions.
Definition 1 (p-Mean Welfare). For p ∈ R, the p-mean wel-
fare of allocation x is defined as

Mp(x) =

(
1

n

∑
i∈N vi(xi)

p

)1/p

.

This class contains three popular welfare functions:
• Choosing p = 1 induces the utilitarian welfare, given by

UW(x) = (1/n) ·
∑
i∈N vi(xi),

• The limit p → 0 induces the Nash welfare, given by
NW(x) = (

∏
i∈N vi(xi))

1/n,
• The limit p → −∞ induces the egalitarian welfare,

given by EW(x) = mini∈N vi(xi).
It is known that p-mean welfare functions are character-

ized by five natural axioms [Moulin, 2003, pp. 66-69], and
further imposing the Pigou-Dalton principle induces p 6 1.
It is interesting that our result for the warm-up case of k = n
also differs depending on whether p 6 1 or p > 1 (see Sec-
tion 3.1).

2.1 Secretive Agents & Distortion
In our setting, we assume that we have no information about
the valuation functions of k agents, whom we term secretive
agents, while we have complete information on the valua-
tion functions of the remaining agents, whom we term non-
secretive agents. Our goal is to find an allocation that min-
imizes the worst-case multiplicative loss of efficiency mea-
sured by a p-mean welfare function.

More formally, let Nsec and Nnonsec denote the sets of se-
cretive and non-secretive agents, respectively. An instance

3Our results for the Nash welfare hold independently of any nor-
malization. However, for every other p-mean welfare function, the
optimal distortion is k + 1 in the absence of any normalization.

of resource allocation with secretive agents (N ,M,vnonsec)
consists of a setN of agent, a setM of items, and a valuation
function vi for each non-secretive agent (the valuation func-
tions implicitly define the sets Nsec and Nnonsec). We aim to
find an optimal strategy for the following game:

1. The adversary chooses the valuation functions of the
non-secretive agents, denoted by vnonsec = (vi)i∈Nnonsec

.
2. The player chooses an allocation x of the goods to all

agents (secretive and non-secretive).
3. The adversary chooses the valuation functions of the se-

cretive agents, denoted by vsec = (vi)i∈Nsec
, as well as

an allocation x∗.
4. The player incurs the (multiplicative) loss W(x∗)/W(x).
This game is formalized via the notion of distortion.

Definition 2 (Distortion with Secretive Agents). Given the
number of agents n, the number of secretive agents k, and a
welfare function W, the distortion is defined as

DW
n,k = sup

vnonsec

inf
x

sup
vsec,x∗

W(x∗)

W(x)
.

Note that the distortion is always at least 1 as the adversary
can always return the same allocation as the player returns,
i.e., x∗ = x.

A strategy for the player corresponds to an allocation rule
that maps instances to allocations. Because we express distor-
tion values that depend on n and m (that is, we are typically
interested in varying vnonsec), we suppress the dependence on
N and M and simply write A(vnonsec) to denote the output
of allocation rule A on instance (N ,M,vnonsec).
Definition 3 (Distortion of an Allocation Rule). Given n
agents, k secretive agents, and a welfare function W, the dis-
tortion of an allocation rule A is defined as

DW
n,k(A) = sup

vnonsec,vsec,x∗

W(x∗)

W(A(vnonsec))
.

If DW
n,k(A) = DW

n,k then we refer to A as an optimal strategy
for the player.

3 Distortion Values
In this section, we present allocation rules that provide prov-
able guarantees on the distortion with respect to p-mean wel-
fare functions.

3.1 Warm-up: k = 0 and k = n
First, let us consider two extreme cases where k = 0 and
k = n which provide us some intuition for the general case.
Case k = 0. If there are no secretive agents, then we have
full information of the utilities and we can return the alloca-
tion that maximizes the welfare for all agents. The adversary
cannot obtain a welfare higher than us, therefore, the distor-
tion value is 1. As N = Nnonsec in this case, we may say
our strategy was maximizing the welfare for the non-secretive
agents. Denote this strategy by

OPTnonsec(vnonsec) = arg max
x

(
1

n

∑
i∈Nnonsec

vi(xi)
p

)1/p

.



Case k = n. Suppose all agents are secretive and we do not
have any information from their utilities. To assist with intu-
ition, assume p 6 1. Our best response would be to return
a uniform allocation, i.e. allocate 1/n of each item to each
(secretive) agent. Intuitively speaking, this follows from the
concavity of Mp for p 6 1. If we act differently, the adver-
sary can use the asymmetry in our allocation to incur a higher
distortion (details provided in the full version). Denote this
strategy by

Uniformsec(vnonsec) = {xi,j =
1

|Nsec|
| ∀j ∈M, i ∈ Nsec}.

Regardless of the utilities, for all agents we have vi(x) =
1/n. Hence, the welfare obtained is 1/n. The adversary can-
not achieve mean welfare of more than 1. Thus, we get an
upper bound of DW

n,k=n 6 n. In the full version, we also
show a matching lower bound.
Lemma 1. For all p-mean welfare functions with p ∈
(−∞, 1] (including NW and UW) and EW, the distortion
with n secretive agents is DW

n,n = n.

The analysis presented does not hold for p > 1. By the
convexity of Mp when p > 1, our best response is to al-
locate all items to one agent. Then, only one agent will
have a utility of 1 while others get 0 utility. Therefore,
( 1
n

∑
i∈N vi(x)p)1/p = (1/n)1/p leading to an upper bound

of DMp
n,n 6 1

n−1/p = n1/p.

Lemma 2. For all p-mean welfare functions with p ∈ (1,∞),
the distortion is DW

n,n = n1/p.

3.2 Results for 1 6 k 6 n− 1

In general, our strategy for the general case is to mix the two
strategies described for the extreme cases of k ∈ {0, n}. That
is, our allocation rule is one from the following class of allo-
cation rules,

Aα = α OPTnonsec + (1− α) Uniformsec, (1)

where we allocate α ∈ [0, 1] portion of each item according
to the OPTnonsec rule, and the rest uniformly among the secre-
tive agents. The proper choice of α however, depends on the
chosen welfare function.

We begin with a lemma that provides an upper bound on
the adversary’s welfare. Throughout this paper, we often use
β =

∑
i∈Nnonsec

vi(OPTnonsec(vnonsec))
p to refer to the unnor-

malized welfare (i.e., the p-th power of the p-mean welfare)
that the non-secretive agents receive under OPTnonsec.
Lemma 3. For any valuations of the non-secretive agents
vnonsec and p ∈ R, it holds that

Mp(x∗) 6

(
1

n
(β + k)

) 1
p

= (k + 1) ·Mp

(
A1/(k+1)(vnonsec)

)
, (2)

where β =
∑
i∈Nnonsec

vi(OPTnonsec(vnonsec))
p. That is,

the welfare achieved by the adversary is at most k + 1
times higher than the welfare achieved by the allocation rule
A1/(k+1).

Proof. Let ui denote the utility achieved by non-secretive
agent i under OPTnonsec. Note that each secretive agent re-
ceives utility at most 1 due to the unit-sum normalization.
Hence,

Mp(x∗) =

(
1

n
·
∑
i∈N

vi(x
∗)p

) 1
p

6

(
1

n

( ∑
i∈Nnonsec

upi +
∑
i∈Nsec

1

)) 1
p

=

(
β + k

n

) 1
p

.

On the other hand, note that the utility vector under
A1/(k+1)(vnonsec) is ( u1

k+1 , . . . ,
un−k

k+1 ,
1
k+1 , . . . ,

1
k+1 ) because

1
k+1 fraction of each item is allocated according to OPTnonsec

and 1
k+1 fraction of each item is allocated to each of k secre-

tive agents. Hence, Mp

(
A1/(k+1)(vnonsec)

)
= 1

k+1 ·
(
β+k
n

) 1
p

,

which yields the desired relation.

Lemma 3 immediately implies the following Corollary.
Corollary 1. For all p-mean welfare functions W, the allo-
cation rule A1/(k+1) has distortion DW

n,k(A1/(k+1)) 6 k + 1 for
all n > k > 0.

It turns out that the upper bound of k+1 is only tight for the
egalitarian and utilitarian welfare functions. For other values
of p, we can achieve lower distortion by tailoring our strategy
to the particular welfare function. The next two lemmas con-
tain common parts to the analysis that we will use to prove
our guarantees.
Lemma 4. Consider a resource allocation instance with se-
cretive agents. For all α ∈ [0, 1] and any p-mean welfare Mp

we have

Mp(x∗)

Mp(Aα(vnonsec))
6

(
β + k

αpβ +
(
1−α
k

)p
k

) 1
p

, fp(β, α),

(3)
where β =

∑
i∈Nnonsec

vi(OPTnonsec(vnonsec))
p.

Proof. By Lemma 3, the welfare achieved by the adversary
is upper bounded by Mp(x∗) 6 ( 1

n (β + k))1/p. Next, us-
ing the allocation rule Aα, the player achieves a welfare of

Mp(Aα(vnonsec)) =
(
1
n

(
αpβ +

(
1−α
k

)p
k
)) 1

p .

Lemma 4 immediately implies that

D
Mp

n,k 6 D
Mp

n,k(Aα) 6 max
vnonsec

(
β + k

αpβ +
(
1−α
k

)p
k

) 1
p

.

Lemma 5. Let fp(β, α) be as defined in (3). Then, for a fixed
α > 1

k+1 , fp is non-increasing over β > 1.

Proof. As fp(β, α) > 1 and since log preserves monotonic-
ity, it is sufficient to show d

dβ log fp(β, α) 6 0 for all β > 1.

d

dβ
log fp(β, α) =

1

p

(
1

β + k
− 1

β +
(
1−α
αk

)p
k

)
.



By α > 1
k+1 , we have 1−α

αk 6 1. Then, we can check this
expression is non-positive both for p > 0 and p < 0.

As fp is non-increasing, to obtain an upper bound on the
distortion, we need a lower bound on β. This value, as well
as the proper choice of α, depends on p. In the rest of this
section, we will find the proper choices for α and β based on
the welfare function. We begin with p ∈ (−∞, 0).

Theorem 1. For p ∈ (−∞, 0), the allocation rule Az/(k+z)

with z = (n− k)
1

1−p achieves D
Mp

n,k(Aα) 6 n
1
p (z + k)

p−1
p .

Taking the limit as p→ 0 and p→ −∞ in Theorem 1 sug-
gests upper bounds of n( 1

n−k )
n−k
n and k+1 for the Nash and

egalitarian welfare respectively. For the egalitarian welfare,
we have already shown an upper bound of k + 1 in Corol-
lary 1, and the following lemma proves that this upper bound
is achievable for the Nash welfare.

Theorem 2. For the Nash welfare, the allocation rule

A(n−k)/n achieves DNW
n,k (Aα) 6 n

(
1

n−k

)n−k
n

.

Now, we will focus on the range p ∈ (0, 1].

Theorem 3. For p ∈ (0, 1], the allocation rule A(n−k)/n

achieves D
Mp

n,k(Aα) 6 n
(

(n−k)1−p+k
n

) 1
p

.

Proof. The requirement of Lemma 5 is met, as for k < n,
(n− k)(k + 1) > n⇒ n−k

n > 1
k+1 .

By Lemma 4, distortion is bounded by (3), and by
Lemma 5, this bound is maximized when β is mini-
mized. For any given vnonsec, one suboptimal allocation is
Uniformnonsec. Each agent gets vi = 1

n−k utility from this
rule. Hence, β > (n− k)( 1

n−k )p = (n− k)1−p.
By substituting β and α in (3), we have

D
Mp

n,k(Aα) 6

(
(n− k)1−p + k(

n−k
n

)p
(n− k)1−p + k

np

) 1
p

= n

(
(n− k)1−p + k

n− k + k

) 1
p

.

Note that for p = 1, Theorem 3 implies an upper bound of
k + 1 for the utilitarian welfare, matching the upper bound
from Corollary 1. Moreover, by taking the limit p → 0 in
Theorem 3, we get the same upper bound proven in Theo-
rem 2.

In fact, for the case of utilitarian welfare, a range of strate-
gies all yield a distortion of k + 1.

Proposition 1. For the utilitarian welfare and for all α ∈
[ 1
k+1 , 1], the allocation rule Aα achieves DUW

n,k (Aα) 6 k + 1.

Proof. By Lemma 4 we have DUW
n,k 6 maxβ

β+k
αβ+(1−α) . As

the utilitarian welfare in any instance is at least 1, e.g. by
giving all items to one agent, by Lemma 5 and setting β = 1
we have DUW

n,k 6 1+k
α+(1−α) = k + 1.

Lastly, the following theorem treats the case of p > 1.

Theorem 4. For p ∈ (1,∞), the allocation rule A1 achieves
D

Mp

n,k(A1) 6 (k + 1)
1
p .

In the full version, we present matching lower bounds for
all of the upper bounds proven in this section.

4 Experiments
In this section, we measure the average-case approximation
ratio of utilitarian welfare achieved by different rules based
on synthetic and real-world data. In principle, one could con-
duct a similar analysis with other welfare measures, but we
focus on utilitarianism for simplicity and conciseness.

Rules. We compare the following allocation rules moti-
vated by Section 1.1: Uniform (allocate items uniformly to
all agents), Aα with α = 1

k+1 , α = n−k
n , and α = 1. Recall

that A1 returns a utilitarian welfare maximizing allocation for
the nonsecretive agents, and all three of the Aα rules tested
achieve the optimal distortion for utilitarian welfare.

Measurement. For a resource allocation instance with se-
cretive agents, we measure the ratio between the maximum
feasible welfare by full information and the welfare obtained
by the rule, averaged over many instances. This provides us
with an average-case analogue of the (worst-case) distortion.

4.1 Synthetic Data
Data Generation. We generate utilities for each agent, ei-
ther secretive or nonsecretive, sampled i.i.d. from a Dirichlet
distribution with m concentration parameters all set at 1, i.e.
Dir(1, . . . , 1). Each reported datum is the average of welfare
ratios over 1000 randomly generated instances.

Experiments. We conduct three experiments each varying
a parameter while fixing the others: vary k (Figure 2a), vary
n with a fixed k (Figure 2b), vary n with a fixed ratio of k/n
(Figure 2c), and vary m (in the full version).

Results. In all four figures we see a consistent relationship
between the rules: rules with higher α outperform rules with
lower α and all three of the Aα rules outperform Uniform.
This is perhaps not surprising, since higher values of α more
heavily exploit the information available to the rule from the
non-secretive agents, with the Uniform rule being one exam-
ple of an extreme case that ignores all available information
about the utility functions.

In Figure 2a we see all three Aα rules achieve average wel-
fare ratio 1 when k = 0, with the welfare ratio converging to
that of Uniform when k = n, as expected. Of particular note
is A1, which achieves an average welfare ratio close to 1 even
for relatively large values of k (for example, the average wel-
fare ratio is ∼ 1.23 when k = 10) before rapidly increasing
for large k. Of note is that all algorithms significantly outper-
form the worst-case bound of k + 1 displayed with a dotted
line in the figure.

Figure 2b reveals an interesting separation when A1 and
A(n−k)/n are compared to A1/(k+1) and Uniform. The aver-
age welfare ratio of the former rules decreases to 1 as n in-
creases (with k = 5) while the average welfare ratio of the
other rules actually increases with n. Figure 2c suggests that
this increase persists even when the ratio k/n is held (approx-
imately) constant.
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Figure 2: Average welfare ratio achieved by different strategies. Error bands indicate the standard deviation. In all plots m = 200.
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Figure 3: Average welfare ratio by different strategies on the Spliddit
data. The x-axis is sorted by n and then k.

4.2 Spliddit Data
Data Generation. We also used the real-world goods division
instances from Spliddit.org. For each instance with n agents
and a fixed k, we randomly sampled k (secretive) agents, hid
their utilities from the allocation rules and measured the wel-
fare ratio based on the actual utilities. Similar to the simulated
experiments, we report the average of 1000 such simulations.

Data Statistics. The report is based on 4679 Spliddit
instances. The distribution of the number of agents n is
{2 : 27.5%, 3 : 67.3%, 4 : 2.4%, 5 : 1.7%, 6 : 0.4%, and
n > 7 : 0.7%}. The number of goods m was in the range
[2, 96] with the mean and std. dev. of 31.1± 26.3.

Experiments. We divided instances based on n and var-
ied k from 1 to min(5, n − 1). The average welfare ratio is
presented in Figure 3.

Results. In line with the results on synthetic data, we see
higher α outperform lower α (and all outperform Uniform).
The dependence on n and k also follows similar patterns as
the synthetic case. Additionally, it is interesting to note the
magnitude of the welfare ratio achieved by our rules. For
Spliddit instances with 5 or fewer agents and at least 2 non-
secretive agents (k 6 n − 2), the average welfare ratio is
never higher than 1.5 for the rule A1. That is, on average, we

could achieve two-thirds of the maximum possible utilitarian
welfare even if one or two agents do not respond to requests
for their utility information.

5 Discussion

We studied distortion in resource allocation when k of the
agents are secretive. For the utilitarian welfare, we identified
a family of rules parametrized by α ∈ [1/k+1, 1] as worst-case
optimal. Among this family, we find the rule with α = 1 to
be particularly interesting because it allocates no resources
to the secretive agents and thus, unlike α < 1, provides no
incentive to an agent to be secretive. This can lead to fewer
agents being secretive, which can further reduce distortion.

It is known that maximizing the Nash welfare yields desir-
able fairness guarantees [Caragiannis et al., 2019; Conitzer et
al., 2019]. Fortunately, we find that the Nash welfare is the
most approximable among all p-mean welfare functions.

Our work opens the door for interesting directions for fu-
ture work. It would be interesting to study instance-wise op-
timal allocations, that is, allocations that minimize the worst-
case approximation ratio on a given instance. It is likely that
such allocations would more carefully decide which (and how
much of) resources to allocate to the secretive agents depend-
ing on how highly they are valued by the non-secretive agents.

One may wish to reconcile distortion (welfare maximiza-
tion) with fairness in the presence of secretive agents. If
the goal is to only ensure fairness among the non-secretive
agents, one can easily modify the rules proposed in this work
by replacing OPTnonsec (the welfare-optimal allocation to the
non-secretive agents) by an allocation to the non-secretive
agents that maximizes welfare subject to the fairness guar-
antee. The additional loss in welfare incurred is precisely
the price of fairness, which is well understood [Caragian-
nis et al., 2012; Bertsimas et al., 2011; Bei et al., 2019;
Barman et al., 2020b].4 However, if the goal is to ensure
fairness to all agents, it may be necessary that no more than
a single agent is secretive, and even then, achieving fairness
alone is already challenging [Arunachaleswaran et al., 2019].

4For ensuring proportionality to the non-secretive agents, we
would need α > (n − k)/n, which can be set for p ∈ [0, 1] while
still using our analysis.
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