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Abstract
We consider an axiomatic view of the Parimutuel Consensus Mechanism de-

fined by Eisenberg and Gale [1959]. The parimutuel consensus mechanism can be
interpreted as a parimutuel market for wagering with a proxy that bets optimally
on behalf of the agents, depending on the bets of the other agents. We show that
the parimutuel consensus mechanism uniquely satisfies the desirable properties of
Pareto optimality, individual rationality, budget balance, anonymity, sybilproof-
ness and envy-freeness. While the parimutuel consensus mechanism does violate
the key property of incentive compatibility, it is incentive compatible in the limit as
the number of agents becomes large. Via simulations on real contest data, we show
that violations of incentive compatibility are both rare and only minimally benefi-
cial for the participants. This suggests that the parimutuel consensus mechanism
is a reasonable mechanism for eliciting information in practice.

1 Introduction
In 1867, Spanish entrepreneur Joseph Oller invented parimutuel betting, a form of
wagering still popular today, handling billions of dollars annually on horse races and jai
alai games. Each bettor places money on one of several future outcomes—say, horse
#1 to win a race. She is allowed to cancel her bet or move her money to a different
outcome at any time, even at the last second before the race begins. After the outcome
resolves—say, horse #1 wins—agents who picked the wrong outcome lose their wagers
to the agents who picked correctly. Winning agents split the pot in proportion to the
size of their wagers.

Eisenberg and Gale [1959] analyzed the equilibrium of parimutuel betting, defining
the parimutuel consensus mechanism (PCM). The PCM is equivalent to parimutuel
betting where each agent has a proxy. Each agent’s proxy knows her true probabilities
for all outcomes. As bets come in, and the prospective payoff per dollar, or odds,
for each outcome converge, the proxy automatically switches its agent’s money to the
outcome yielding the highest expected payoff for that agent. In equilibrium, all the
proxies are optimizing and none want to switch outcomes.

∗A preliminary version of this paper appears in IJCAI’18.
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At any point in time, the odds can be interpreted as probabilities, providing a pre-
diction of the outcome of the event. Thus, facilitating wagering can serve as a source
of free information for a principal seeking to forecast a future event.

Eisenberg and Gale discuss one undesirable feature of the equilibrium: it produces
odds that sometimes ignore some agents. Manski [2006] further explores in detail how
the equilibrium of risk-neutral, budget-constrained agents may fail to aggregate beliefs
in a sensible way. Additionally, the PCM is not incentive compatible, or truthful. An
agent may strategically improve her payoff by taking into account what other agents
know or what they may do. In the end, her best action may be to report false proba-
bilities to her proxy that differ from her true subjective probabilities. For a principal
whose primary goal is information elicitation, this is problematic because some of the
reported probabilities may not faithfully reflect the bettors’ private information.

Given the potential for bad equilibria and the lack of incentive compatibility, why is
the PCM still prevalent? One answer is that, in practice, it often works fine. Parimutuel
betting does consistently induce a wisdom-of-crowds effect, producing odds that en-
code well calibrated and accurate probabilistic forecasts of the outcomes [Ali, 1977,
Snyder, 1978, Thaler and Ziemba, 1988], like many prediction markets do [Arrow
et al., 2008]. Plott et al. [2003] tested parimutuel betting in a laboratory experiment,
showing that the mechanism is an effective vehicle for information aggregation regard-
less of why it might go wrong in theory. If agents have concave or risk-averse utility
for money, the equilibrium of similar mechanisms is stable and induces sensible belief
aggregation [Wolfers and Zitzewitz, 2006, Beygelzimer et al., 2012]. In particular, an
agent with logarithmic utility does best by betting an amount on each outcome propor-
tional to her probability [Cover and Thomas, 2006].

We examine another plausible reason why the PCM continues to enjoy usage: the
mechanism satisfies a number of desirable axioms for wagering systems. We prove
that the PCM is the unique wagering mechanism that is Pareto optimal, individually
rational, budget balanced, sybilproof, anonymous, and envy-free, subject to a mild
condition on the reports.

Freeman et al. [2017] show that, to gain the key property of incentive compatibility,
one of the core properties must be relaxed. Yet we can show that the PCM is near in-
centive compatible in some cases. Yes, there are scenarios where agents can gain from
lying, but we prove that the PCM is incentive compatible in the large, as the number of
agents grows. In extensive simulations using real forecasts from an online contest, we
show that opportunities for agents to profit from untruthful play are rare, mostly van-
ishing as the number of agents grows. Our results shed light on the practical success of
the PCM. Despite its flaws, identified as early as 1959, it does satisfy six natural and
desirable properties of wagering mechanisms and it comes close both theoretically and
empirically to obtaining a crucial seventh: incentive compatibility.
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2 Preliminaries
Consider a random variable (event) X which takes a value (outcome) in {0, 1}. There
is a set of agents (or bettors)N = N,1 each with a private, subjective, immutable belief
pi which is the probability thatX = 1, and a budgetwi, which is the maximum amount
that they are prepared to lose.

A wagering mechanism is used to elicit beliefs from the agents. Each agent submits
a report p̂i ∈ [0, 1] and wagerwi ∈ Q≥0 to the mechanism, where p̂i captures her belief
and wi captures her budget.2 We denote the vector of agents’ reports by p̂, and the
vector of agents’ wagers by w. The wagering mechanism defines a payoff Πi(p̂;w;x)
to each agent that depends on the reports and wagers of the agents and x, the observed
value of X . To be a valid wagering mechanism, it must be the case that no agent loses
more than her wager (i.e., Πi(p̂;w;x) ≥ −wi) and that an agent with zero wager does
not participate in the mechanism (i.e., Πi(p̂;w;x) = 0 if wi = 0). We denote the
reports and wagers of all agents other than i by p̂−i and w−i respectively.

2.1 Security Interpretation of Wagering Mechanisms
Freeman et al. [2017] observed that the output of a wagering mechanism can be in-
terpreted as an allocation of Arrow-Debreu securities with payoffs that depend on the
realization of X . A yes security is a contract that pays off $1 in the outcome X = 1
and $0 if X = 0. Similarly, a no security pays off $0 if X = 1 and $1 if X = 0. A
risk neutral agent with belief p about the likelihood that X = 1 would be willing to
buy a yes security at any price up to p or a no security at any price up to 1− p.

Suppose a wagering mechanism would yield a net payoff to agent i of ρ1 =
Πi(p̂;w; 1) when X = 1 and ρ0 = Πi(p̂;w; 0) when X = 0. This is equivalent
to the payoff that i would receive if she were sold yi = max{ρ1 − ρ0, 0} yes securi-
ties and ni = max{ρ0 − ρ1, 0} no securities for a total cost of σi = max{−ρ0,−ρ1}.
For example, if ρ0 < ρ1, then agent i’s participation in the wagering mechanism is
equivalent to agent i paying the principal σi = −ρ0 before X is realized and then
receiving yi = ρ1 − ρ0 from the principal in the outcome X = 1.

Therefore, the output of a wagering mechanism can be completely specified by
a triple (y,n,σ), where for each agent i, yi (resp. ni) is the number of yes (no)
securities allocated to i, and σi is the cost paid by i for these securities. The requirement
that no agent can lose more than her wager is captured by the constraint σi ≤ wi.
Without loss of generality, we assume that for all i, either yi = 0 or ni = 0 (or both),
since any (fraction of a) pair of yes and no securities can be precisely converted into
(a fraction of) $1.

2.2 Properties of Wagering Mechanisms
Lambert et al. [2008] introduced several desirable properties for wagering mechanisms.

1Following Lambert et al. [2008], this is without loss of generality since non-participation can be seen as
making a zero wager.

2The assumption of rational wagers is required in Section 4. Rational wagers can approximate real-valued
budgets arbitratily well.
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We focus on five of these properties in our analysis: anonymity, individual rationality,
incentive compatibility, budget balance, and sybilproofness.

First, anonymity says that the payouts do not depend on the identities of the agents.
This is a basic property that all wagering mechanisms proposed in the literature, in-
cluding the PCM, satisfy.

Individual rationality says that agents do not lose money (in expectation) by partic-
ipating truthfully. We note that this is slightly stronger than the usual definition, which
only requires that there exists some (not necessarily truthful) report for which agent i
does not make an expected loss. Our definition is implied by the combination of the
usual definition of individual rationality, and incentive compatibility. We require the
stronger version in the proof of Theorem 2.

Definition 1. A wagering mechanism is individually rational if, for any agent i and any
belief pi, for all p̂−i,w her expected payoff is greater than or equal to her cost; that
is,

piyi(pi, p̂−i;w) + (1− pi)ni(pi, p̂−i;w) ≥ σi(pi, p̂−i;w)

Incentive compatibility requires that each agent maximizes her expected payoff by
reporting truthfully, regardless of the reports and wagers of other agents.

Definition 2. A wagering mechanism is (weakly) incentive compatible if, for every
agent i with belief pi and all reports p̂ and wagers w,

piyi(pi, p̂−i;w) + (1− pi)ni(pi, p̂−i;w)− σi(pi, p̂−i;w)

≥ piyi(p̂;w) + (1− pi)ni(p̂;w)− σi(p̂;w).

A wagering mechanism is budget balanced if the principal never makes a profit or
a loss.

Definition 3. A wagering mechanism is budget balanced if, for all p̂ and w,∑
i∈N

yi(p̂;w) =
∑
i∈N

ni(p̂;w) =
∑
i∈N

σi(p̂;w)

If the mechanism sometimes makes a profit, but never a loss, then we say that it is
weakly budget balanced.

A mechanism is sybilproof if it is not beneficial for agents to participate under
multiple fake identities, or for agents reporting the same probability to merge.

Definition 4. A wagering mechanism is sybilproof if for any subset of players S, for
any p̂ with p̂i = p̂j for i, j ∈ S, for any vectors of wagers w,w′ with wi = w′i for
i /∈ S and

∑
i∈S wi =

∑
i∈S w

′
i, it is the case that:∑

i∈S
(yi(p̂;w), ni(p̂;w), σi(p̂;w)) =

∑
i∈S

(yi(p̂;w′), ni(p̂;w′), σi(p̂;w′))

and for all i /∈ S,

(yi(p̂;w),ni(p̂;w), σi(p̂;w)) = (yi(p̂;w′), ni(p̂;w′), σi(p̂;w′)).
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Freeman et al. [2017] introduce the notion of Pareto optimality for wagering mech-
anisms, which is satisfied if there is no side bet that can be made by the agents on top
of that already facilitated by the wagering mechanism, such that some agent benefits
without harming others. Freeman et al. show that the following condition is equivalent.

Definition 5. A wagering mechanism is Pareto optimal if, for all reports p̂ and w,
there exists a p ∈ [0, 1] such that

∀i : p̂i < p, σi(p̂;w) = wi and yi(p̂;w) = 0,

∀i : p̂i > p, σi(p̂;w) = wi and ni(p̂;w) = 0.

Freeman et al. [2017] show that four key properties are incompatible.

Theorem 1 (Freeman et al. [2017]). No wagering mechanism simultaneously satisfies
individual rationality, weak incentive compatibility, weak budget balance, and Pareto
optimality.

Lastly, we consider the property of envy-freeness [Foley, 1967]. Envy-freeness
is a basic fairness property which says that no player should envy the allocation of
securities to any other agent.

Definition 6. Say that agent i envies another agent j if σj(p̂,w) ≤ wi and

p̂iyi(p̂;w)+(1−p̂i)ni(p̂;w)−σi(p̂;w) < p̂iyj(p̂;w)+(1−p̂i)nj(p̂;w)−σj(p̂;w)

A wagering mechanism is envy-free if there is no pair of agents (i, j) such that i envies
j.

3 The Parimutuel Consensus Mechanism
The Parimutuel Consensus Mechanism (PCM) can be thought of as a direct imple-
mentation of the equilibrium of parimutuel betting. The PCM includes the rules of
parimutuel betting plus, conceptually, a proxy agent that automatically switches its
agent’s bet to the outcome with highest expected profit per security. The output of the
mechanism is the equilibrium where all proxies are stable. For the binary case of yes
and no outcomes that we consider, the PCM is defined by a price π such that an agent
with report less than π is allocated no securities at a price of 1−π per security, and an
agent with report more than π is allocated yes securities at a price of π per security.
The equilibrium condition is∑

i:p̂i<π

wi
1− π

+
∑
i:p̂i=π

c1wi
1− π

=
∑
i:p̂i>π

wi
π

+
∑
i:p̂i=π

c2wi
π

, (1)

where c1 and c2 lie in the interval [0, 1] and min{c1, c2} = 0. These represent the
fractions of budgets spent by agents with p̂i = π who bet (some of) their wager to
correctly balance the market prices and allow the market to reach equilibrium, even
though they get zero expected profit. At most one of c1 and c2 is greater than 0, since
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it would be redundant to have agents with p̂i = π betting on both yes and no. Note
that the left hand side of Equation 1 is the total number of no securities allocated, and
the right hand side is the total number of yes securities allocated. Eisenberg and Gale
[1959] show as their main contribution that such a price is both unique and guaranteed
to exist. The output of the PCM is defined by

yi(p̂;w) =


0 p̂i < π
c2wi

π p̂i = π
wi

π p̂i > π

, ni(p̂;w) =


wi

1−π p̂i < π
c1wi

1−π p̂i = π

0 p̂i > π

and

σi(p̂;w) =


wi p̂i < π

max{c1, c2}wi p̂i = π

wi p̂i > π

Example 1. Suppose that there are four agents, with reports p̂ = (0.3, 0.5, 0.6, 0.8)
and wagersw = (1, 1, 3, 6). Observe that setting π = 0.6 and c1 = 2

3 , c2 = 0 satisfies
Equation 1: each side of the equation has value 10. Further, setting π < 0.6 results in
the right hand side of Equation 1 being greater than the left hand side, for any allowed
values of c1 and c2, and the opposite is true for any π > 0.6.

We can now compute the output of the PCM on this instance, according to the
formulae above. Agents 1 and 2 are allocated 2.5 no securities each, for a price of 1,
agent 3 is allocated 5 no securities for a price of 2 (note that this is a c1 = 2

3 fraction
of agent 3’s wager), and agent 4 is allocated 10 yes securities for a price of 6.

Recall that, by Theorem 1, no wagering mechanism can simultaneously satisfy in-
dividual rationality, incentive compatibility, weak budget balance, and Pareto optimal-
ity. Theoretical papers on wagering mechanisms are generally reluctant to give up any
of the first three properties, sacrificing Pareto optimality [Chen et al., 2014, Freeman
et al., 2017, Lambert et al., 2008, 2015]. However, in practice, Pareto optimality is an
important consideration and virtually all real-world wagering mechanisms, including
parimutuels, bookmakers, and double auctions, satisfy it. This is because trade drives
participation; a mechanism that facilitates little trade is of little use or interest to agents.

Individual rationality seems hard to give up. We cannot force agents to play a game
that they expect to lose and, even if we did, they could just wager wi = 0. The center
may be willing to pay for the information inherent in the agents’ beliefs, subsidizing
the mechanism and relaxing budget balance. Market scoring rules [Chen and Pennock,
2007, Hanson, 2003], for example, do just that, losing a strictly bounded amount of
money in service of gaining information. However, a patron will only subsidize events
that bear on valuable decisions. Nearly all fielded wagering mechanisms have taxes,
not subsidies, yielding profits, not losses.

If we want Pareto optimality, individual rationality, and (weak) budget balance, we
are forced to give up on incentive compatibility. That’s exactly what the PCM does. In
the remainder of this paper, we show that the PCM is the unique wagering mechanism
that simultaneously satisfies the other six properties from Section 2, subject to a con-
dition on the reports. We then show that, despite not satisfying incentive compatibility,
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the PCM is approximately incentive compatibile in two senses. First, we prove that,
as the number of agents grows, the mechanism is incentive compatible in the large.
Second, we show empirically that, across thousands of simulated wagers based on real
probability estimates, opportunities to profit from misreports are almost negligible.

4 Properties of the Parimutuel Consensus Mechanism
Despite its theoretical flaws, including the possibility of nonsensical information aggre-
gation, the PCM seems well behaved in practice. In this section, we examine one pos-
sible reason for this by providing a theoretical justification for the PCM. We first note
that the PCM satisfies six desirable properties for wagering mechanisms. Although in-
centive compatibility is not one of the six, we know that adding it is impossible without
giving something up: no mechanism satisfying even just the first three properties can
also be incentive compatible.

Proposition 1. The parimutuel consensus mechanism satisfies individual rationality,
budget balance, Pareto optimality, anonymity, sybilproofness, and envy-freeness.

That the PCM satisfies the first three properties is noted by Freeman et al. [2017].

Proof. For this proof, we assume that c2 = 0 in the equilibrium condition given by
Equation 1. The proof for the case where c1 = 0 follows via symmetric arguments for
all properties.

1. Anonymity Anonymity clearly holds because Equation 1 and the allocation of
securities do not depend on the identities of the agents.

2. Individual rationality: Consider some agent i. If pi < π,

piyi(pi, p̂−i;w) + (1− pi)ni(pi, p̂−i;w) = (1− pi)
wi

1− π
> wi = σi(pi, p̂−i;w)

If pi > π,

piyi(pi, p̂−i;w) + (1− pi)ni(pi, p̂−i;w) = pi
wi
π
> wi = σi(pi, p̂−i;w)

Finally, if pi = π,

piyi(pi, p̂−i;w) + (1− pi)ni(pi, p̂−i;w) = (1− pi)c1
wi

1− π
= c1wi = σi(pi, p̂−i;w)

3. Budget balance: First, note that∑
i∈N

yi(p̂;w) =
∑
p̂i>π

wi
π

=
∑
p̂i<π

wi
1− π

+ c1
∑
p̂i=π

w1

1− π
=
∑
i∈N

ni(p̂;w),
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where the second transition follows from the definition of π. Next,∑
i∈N

σi(p̂;w) =
∑
p̂i>π

wi +
∑
p̂i<π

wi +
∑
p̂i=π

c1wi

= π
∑
p̂i>π

wi
π

+ (1− π)

∑
p̂i<π

wi
1− π

+ c1
∑
p̂i=π

w1

1− π


= π

∑
p̂i>π

wi
π

+ (1− π)
∑
p̂i>π

wi
π

=
∑
p̂i>π

wi
π

=
∑
i∈N

yi(p̂;w) =
∑
i∈N

ni(p̂;w),

Where the third transition is obtained via the definition of π (and noting that c2 = 0,
by assumption).

4. Pareto optimality We show that the price π satisfies the condition of the Pareto
optimality definition. From the definition of the PCM, if p̂i > π then σi(p̂;w) = wi
and ni(p̂;w) = 0, and if p̂i < π then σi(p̂;w) = wi and yi(p̂;w) = 0.

5. Sybilproofness: Consider a set of sybils S such that w and w′ satisfy the
conditions of Definition 4, with corresponding prices π and π′ reached by the PCM.
By the definition of sybils, the following three conditions hold:∑

i:p̂i<π

wi =
∑
i:p̂i<π

w′i,
∑
i:p̂i=π

wi =
∑
i:p̂i=π

w′i,
∑
i:p̂i>π

wi =
∑
i:p̂i>π

w′i

It follows immediately that∑
i:p̂i<π

wi
1− π

+ c1
∑
i:p̂i=π

wi
1− π

=
∑
i:p̂i>π

wi
π

=⇒
∑
i:p̂i<π

w′i
1− π

+ c1
∑
i:p̂i=π

w′i
1− π

=
∑
i:p̂i>π

w′i
π
,

so π = π′, with the same value of c1 in both cases.
Suppose first that i /∈ S. If p̂i > π then

(yi(p̂;w), ni(p̂;w), σi(p̂;w)) = (
wi
π
, 0, wi)

= (
w′i
π′
, 0, w′i) = (yi(p̂;w′), ni(p̂;w′), σi(p̂;w′)).

If p̂i < π then

(yi(p̂;w), ni(p̂;w), σi(p̂;w)) = (0,
wi

1− π
,wi)

= (0,
w′i

1− π′
, w′i) = (yi(p̂;w′), ni(p̂;w′), σi(p̂;w′)).

8



Finally, if p̂i = π then

(yi(p̂;w), ni(p̂;w), σi(p̂;w)) = (0, c1
wi

1− π
, c1wi)

= (0, c1
w′i

1− π′
, c1w

′
i) = (yi(p̂;w′), ni(p̂;w′), σi(p̂;w′)).

Next, suppose that i ∈ S. If p̂i > π = π′, then p̂j = p̂i > π = π′ for all j ∈ S. We
have ∑

i∈S
(yi(p̂;w), ni(p̂;w), σi(p̂;w)) =

(∑
i∈S

wi
π
, 0,
∑
i∈S

wi

)

=

(∑
i∈S

w′i
π′
, 0,
∑
i∈S

w′i

)
=
∑
i∈S

(yi(p̂;w′), ni(p̂;w′), σi(p̂;w′)).

If p̂i < π = π′, then∑
i∈S

(yi(p̂;w), ni(p̂;w), σi(p̂;w)) =

(
0,
∑
i∈S

wi
1− π

,
∑
i∈S

wi

)

=

(
0,
∑
i∈S

w′i
1− π′

,
∑
i∈S

w′i

)
=
∑
i∈S

(yi(p̂;w′), ni(p̂;w′), σi(p̂;w′)).

Finally, if p̂i = π = π′ then∑
i∈S

(yi(p̂;w), ni(p̂;w), σi(p̂;w)) =

(
0,
∑
i∈S

c1wi
1− π

,
∑
i∈S

c1wi

)

=

(
0,
∑
i∈S

c1w
′
i

1− π′
,
∑
i∈S

c1w
′
i

)
=
∑
i∈S

(yi(p̂;w′), ni(p̂;w′), σi(p̂;w′)).

Therefore, the conditions for sybilproofness are satisfied.
6. Envy-freeness: Consider an agent i with p̂i < π. Let j 6= i. If σj(p̂;w) > wi

then i does not envy j, so suppose that σj(p̂;w) ≤ wi.
Suppose that p̂j > π. Then

p̂iyj(p̂;w) + (1− p̂i)nj(p̂;w)− σj(p̂;w) = p̂i
wj
π
− wj

< 0

< p̂iyi(p̂;w) + (1− p̂i)ni(p̂;w)− σi(p̂;w)

Next, suppose that p̂j < π. Then

p̂iyj(p̂;w) + (1− p̂i)nj(p̂;w)− σj(p̂;w) = (1− p̂i)
wj

1− π
− wj

= wj(
1− p̂i
1− π

− 1)

≤ wi(
1− p̂i
1− π

− 1)

= p̂iyi(p̂;w) + (1− p̂i)ni(p̂;w)− σi(p̂;w)
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Finally, suppose that p̂j = π. Then

p̂iyj(p̂;w) + (1− p̂i)nj(p̂;w)− σj(p̂;w) = (1− p̂i)
c1wj
1− π

− c1wj

= c1wj(
1− p̂i
1− π

− 1)

≤ wi(
1− p̂i
1− π

− 1)

= p̂iyi(p̂;w) + (1− p̂i)ni(p̂;w)− σi(p̂;w)

The cases where p̂i = π and p̂i > π can be proven similarly.

4.1 Axiomatic Characterization
We next show that the PCM is the unique wagering mechanism satisfying the six prop-
erties from Proposition 1, subject to a condition on the reports. Suppose that some
non-zero wager is placed on N > 3 distinct reports, denoted by P1 < P2 < . . . < PN ,
and let Wk =

∑
i:p̂i=Pk

wi be the total wager at probability Pk. We say that the

non-extreme assumption holds if P2W1 < (1− P2)
∑N
i=3Wi and (1− PN−1)WN <

PN−1
∑N−2
i=1 Wi. For the data set used in Section 5 and wagers generated according to

a Pareto(α = 1.16) distribution (see Section 5 for details), the non-extreme assumption
held on over 99.97% of instances.

Theorem 2. Let M be a wagering mechanism satisfying anonymity, individual ra-
tionality, budget balance, Pareto optimality, sybilproofness, and envy-freeness. If the
non-extreme assumption holds, then payoffs defined by M match those defined by the
parimutuel consensus mechanism.

Proof. We first show that any wagering mechanism that satisfies envy-freeness, sybil-
proofness, and anonymity is defined by fixed prices py and pn for yes and no secu-
rities. That is, for all agents i with yi(p̂;w) > 0, we have py = σi(p̂;w)

yi(p̂;w) , and for all

agents i with ni(p̂;w) > 0, we have pn = σi(p̂;w)
ni(p̂;w) .

To prove this, suppose otherwise for contradiction. That is, suppose that there exist
agents i, j with yi(p̂;w) > 0 and yj(p̂;w) > 0 such that σi(p̂;w)

yi(p̂;w) >
σj(p̂;w)
yj(p̂;w) . Consider

a modified instance (p̂;w′) in which both of i and j participate as sybils, denoted by
sets Si and Sj , instead of their individual identities, such that for all k, ` ∈ Si ∪ Sj ,
we have that σk = σ`. By sybilproofness and anonymity it must be the case that
σk(p̂;w′) = σi(p̂;w)/|Si| and yk(p̂;w′) = yi(p̂;w)/|Si| for all k ∈ Si, with the
equivalent equalities holding for all ` ∈ Sj also. Therefore, for all k ∈ Si and ` ∈ Sj ,

σk(p̂;w′)

yk(p̂;w′)
=
σi(p̂;w)

yi(p̂;w)
>
σj(p̂;w)

yj(p̂;w)
=
σ`(p̂;w′)

y`(p̂;w′)
.

Because σk(p̂;w′) = σ`(p̂;w′), k envies `, violating envy-freeness in the modified
instance. An identical argument shows the existence of a fixed price pn for no securi-
ties.

10



By budget balance, the wagering mechanism must sell exactly the same number of
yes and no securities, and it must be the case that each yes/no pair sells for exactly
$1. Therefore, py+pn = 1. By individual rationality, it must be the case that all agents
with p̂i < py have yi(p̂;w) = 0, and all agents with p̂i > py have ni(p̂;w) = 0.

We now use Pareto optimality, along with sybilproofness, anonymity, and envy-
freeness, to show that whenever there exist agents i and j, with p̂j > p̂i > py , it must
be the case that σi(p̂;w) = wi and σj(p̂;w) = wj . We know by Pareto optimality that
at least one of the equalities must hold; say, σi(p̂;w) = wi. Suppose for contradiction
that σj(p̂;w) < wj . Again consider a modified instance (p̂;w′) in which i and j
participate as sybils, denoted by sets Si and Sj , instead of their individual identities,
such that for all k, ` ∈ Si ∪ Sj , we have that w′k = w′`. By anonymity, we have
σk(p̂;w′) = w′k for all k ∈ Si and σ`(p̂;w′) < w′` for all ` ∈ Sj . Now, using that fact
that all agents are buying yes securities at price py , we have that

p̂`y`(p̂;w′) + (1− p̂`)n`(p̂;w′)− σ`(p̂;w′)

= p̂`
σ`(p̂;w′)

py
− σ`(p̂;w′)

< p̂`
w′`
py
− w′`

= p̂`
w′k
py
− w′k

= p̂`
σk(p̂;w′)

py
− σk(p̂;w′)

= p̂`yk(p̂;w′) + (1− p̂`)nk(p̂;w′)− σk(p̂;w′)

Therefore, agent ` ∈ Sj envies agent k ∈ Si, violating envy-freeness. A similar
argument can be used to show that σi(p̂;w) = wi and σj(p̂;w) = wj when p̂j <
p̂i < py .

Next, suppose that p̂j > p̂i = py . We show that if yi(p̂;w) > 0 then σj(p̂;w) =
wj . First, note that if σi(p̂;w) < wi, then Pareto optimality implies that σj(p̂;w) =
wj . So suppose that σi(p̂;w) = wi. Then, because we have also assumed that
yi(p̂;w) > 0, we know that yi(p̂;w) = σi(p̂;w)

py
= wi

py
. We can now use an argu-

ment identical to that used in the previous paragraph to argue that if σj(p̂;w) < wj ,
then we can create the same modified instance (p̂;w′) so that sybils of j will envy
sybils of i. Therefore, σj(p̂;w) = wj .

We now show that, provided the condition on reports in the statement of the theorem
holds, yi(p̂;w) > 0 for all i with p̂i = pN−1 (note that this, along with individual
rationality, implies py ≤ pN−1). To see this, suppose otherwise. There are two cases.
First, if py < pN−1 < pN , then by our earlier observation it must be the case that
σi(p̂;w) = wi for all i with p̂i = pN−1 or p̂i = pN . Therefore, yi(p̂;w) = wi

py
> 0.

Second, if py ≥ pN−1 and yi(p̂;w) = 0 for some i with p̂i = pN−1, then we can use
sybilproofness and anonymity to argue that yi(p̂;w) = 0 for all i with p̂i = pN−1.
Therefore, the total number of yes securities allocated is strictly less than the total
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number of no securities allocated:∑
i∈N

yi(p̂;w) ≤ WN

py
≤ WN

pN−1
<

1

1− pN−1

N−2∑
i=1

Wi ≤
1

pn

N−2∑
i=1

Wi ≤
∑
i∈N

ni(p̂;w)

This violates budget balance. By a symmetric argument, we can show that pn ≤ 1−p2
and ni(p̂;w) > 0 for all i with p̂i = p2.

In particular, the previous paragraph says that, subject to the conditions of the theo-
rem holding, at least two bettors with distinct reports are allocated yes securities, and
at least two bettors with distinct reports are allocated no securities. By the two earlier
paragraphs, this implies that for all iwith p̂i > py , we have σi(p̂;w) = wi, yi(p̂;w) =
wi

py
, ni(p̂;w) = 0, and for all i with 1− p̂i > pn, we have σi(p̂;w) = wi, yi(p̂;w) =

0, ni(p̂;w) = wi

pn
.

Finally, it is easy to see that the only value of py/pn that satisfies this condition
while allocating an equal number of yes and no securities and satisfying py = 1− pn
is that defined by py = π and pn = 1 − π, from Equation 1. To characterize the
allocations and payments of agents with p̂i = py , we note that these agents are required
to exactly make up the difference between yes and no securities, if such a difference
exists. By anonymity and sybilproofness, each of these bettors must be sold a number
of securities that is proportional to their wager. This exactly matches the allocations
and payments defined by the PCM.

4.2 Incentive Properties of the PCM
As a Corollary of Theorem 1 and Proposition 1, we know that the PCM violates incen-
tive compatibility. Intuitively, this is because agents are able to change the price π by
changing their reports.

Example 2. Let p = (0.4, 23 , 0.8) and w = (1, 1, 1). Then the outcome of the PCM is
(y = (0, 1.5, 1.5),n = (3, 0, 0),σ = (1, 1, 1)). Note that the price π = 2

3 , so agent
2’s utility is 0. However, if agent 2 misreports p̂2 = 0.6, then the outcome becomes
(y = (0, 56 ,

5
3 ),n = (2.5, 0, 0),σ = (1, 0.5, 1)). Now the price π = 0.6, so agent 2’s

utility is 5
6 ·

2
3 − 0.5 = 1

18 > 0.

Example 2 has a particular form common to all profitable misreports. In order
to change the price in a profitable way, a manipulating agent must ensure that her
misreport exactly matches the new equilibrium price. The intuition is that the only
way an agent can affect the price is to report a probability on the opposite side of the
current price as her belief. However, such a misreport is only profitable if she does not
‘over-shoot’ and end up buying the wrong type of security.

Theorem 3. Let p̂i 6= pi be a profitable misreport for agent i. Let πT denote the yes
security price when agent i reports truthfully, and πM denote the yes security price in
the instance when i misreports p̂i. Then it must be the case that p̂i = πM , and either
p̂i < πT ≤ pi or pi ≤ πT < p̂i.

Before we give the proof, we first state and prove a monotonicity lemma which
states that, all else being equal, if the report of a single agent increases then the security
price π also (weakly) increases.

12



Lemma 1. Let p̂−i = p̂′−i. Let p̂′i < p̂i, and denote by π′ the equilibrium price
under vector of reports p̂′, and π the equilibrium price under vector of reports p̂. Then
π′ ≤ π.

Proof. Consider the equilibrium condition, Equation 1:∑
j:p̂j<π

wj
1− π

+ c1
∑
j:p̂j=π

wj
1− π

=
∑
j:p̂j>π

wj
π

+ c2
∑
j:p̂j=π

wj
π

Suppose that p̂i > π (other cases can be handled similarly). Suppose for contradiction
that π′ > π. Let c1, c2 represent the values of the equilibrium constants in the case that
i reports p̂i, and c′1, c

′
2 represent those values when i reports p̂′i. Then we have∑

j:p̂j>π

wj
π

+ c2
∑
j:p̂j=π

wj
π
≥

∑
j:p̂j>π

wj
π
>

∑
j:p̂j>π

wj
π′

≥
∑

j:p̂′j>π
′

wj
π′

+ c′2
∑

j:p̂′j=π
′

wj
π′

=
∑

j:p̂′j<π
′

wj
1− π′

+ c′1
∑

j:p̂′j=π
′

wj
1− π′

≥
∑

j:p̂′j<π
′

wj
1− π′

≥
∑
j:p̂j<π

wj
1− π′

+ c1
∑
j:p̂j=π

wj
1− π′

>
∑
j:p̂j<π

wj
1− π

+ c1
∑
j:p̂j=π

wj
1− π

where the equality holds by Equation 1, and the inequalities all hold due to the assump-
tions that p̂i > π and that π′ > π. Comparing the first and last line contradicts that π is
the equilibrium price under reports p̂. Therefore, it must be the case that π′ ≤ π.

Proof of Theorem 3. Suppose that pi > πT . The cases pi < πT and pi = πT can
be proven similarly. Note that if πM = πT , then p̂i cannot be a profitable misreport,
because under truthful reporting, i already buys as many yes securities as her budget
allows, and these are the only securities from which she obtains positive expected profit
at the current price πT . Therefore, to show that any profitable misreport satisfies p̂i <
πT , we show that πM = πT whenever p̂i ≥ πT .

Consider again Equation 1. For p̂i > πT , if we set π = πT then each term in the
equation takes the same value under truthful reporting and misreporting. Therefore,
equality holds in the misreported case with πM = πT . Next, if p̂i = πT < pi,
then we know that πM ≤ πT , by Lemma 1, since p̂i < pi. It remains to rule out
πM < πT . So suppose for contradiction that πM < πT = p̂i < pi. Let cM1 , c

M
2 denote

the equilibrium values of c1 and c2 when i misreports p̂i, and cT1 , c
T
2 the equilibrium

values when i truthfully reports pi. Then we have a similar system of inequalities as in
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the proof of Lemma 1 (some steps are omitted),∑
j:p̂j>πM

wj
πM

+ cM2
∑

j:p̂j=πM

wj
πM
≥

∑
j:p̂j>πM

wj
πM

>
∑

j:p̂j>πM

wj
πT

≥
∑

j:p̂j>πT

wj
πT

+
wi
πT

+ cT2
∑

j:p̂j=πT

wj
πT

=
∑

j:p̂j<πT

wj
1− πT

+ cT1
∑

j:p̂j=πT

wj
1− πT

≥
∑

j:p̂j<πT

wj
1− πT

≥
∑

j:p̂j<πM

wj
1− πT

+ cM1
∑

j:p̂j=πM

wj
1− πT

>
∑

j:p̂j<πM

wj
1− πM

+ cM1
∑

j:p̂j=πM

wj
1− πM

which contradicts that πM is the equilibrium price when i reports p̂i. Therefore it is
not the case that πM < πT , so πM = πT and the misreport p̂i ≥ πT is not profitable.

We have shown that p̂i < πT < pi must hold for any profitable misreport p̂i.
Therefore, by Lemma 1, we know that πM ≤ πT . We now show that πM = p̂i. First,
suppose that p̂i < πM . Then i is buying no securities at a price 1−πM ≥ 1−πT > 1−
pi, where 1−pi is her value for a no security. Therefore, she obtains negative expected
profit from this purchase, meaning that p̂i is not a profitable misreport. Second, suppose
that p̂i > πM . In this case, we can argue by setting π = πM in Equation 1. It is easy
to see that at this equilibrium price, strictly more yes securities are sold than in the
truthful case, and strictly fewer no securities. This violates budget balance, since equal
numbers of yes and no securities are sold in the truthful case. Therefore, πM = πT .
However, we have already established that if πM = πT , then p̂i is not a profitable
misreport, a contradiction.

Incentive Compatibility in the Large. We now show that the PCM satisfies an ap-
proximate notion of incentive compatibility known as incentive compatibility in the
large (IC-L), introduced by Azevedo and Budish [2017].3 It relaxes incentive com-
patibility by requiring only that truthful reporting is optimal as the number of agents
grows large, and that truthful reporting is only optimal in expectation over the reports,
rather than based on the (ex-post) realization of reports, as our definition of incentive
compatibility requires.

Conceptually, this section mirrors the work of Azevedo and Budish. Indeed, in
cases where only a finite set of reports are allowed, that the PCM satisfies IC-L follows
directly from the fact that the PCM satisfies envy-freeness (Azevedo and Budish show

3There is a large body of work focusing on other limiting IC criteria, including ε-
strategyproofness Roberts and Postlewaite [1976], Ehlers et al. [2004], that we do not focus on here.
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that this implies IC-L when the number of possible reports is finite). Since finite sets
of reports can provide arbitrary precision, this is usually enough for practical purposes.
Most real-world mechanisms only allow reports up to a precision of 1%, and this is also
the precision we use in our simulations (see Footnote 5). However, for completeness,
we provide an independent proof of IC-L for the case where an infinite number of
reports are allowed. The proof is a simple extension of the finite reports case.

Let D denote a probability distribution over [0, 1] with full support. We model
each agent as drawing a report p̂i i.i.d. according to D. So D models the distribution
of reports, not necessarily beliefs. We will assume that wagers are drawn i.i.d. from
some fixed distribution bounded by the interval [1,W ] for some W ≥ 1. In particular,
the ratio of the wagers of any two agents is bounded by W . Denote the expected value
of a randomly drawn wager by w.

For the remainder of this section, let (yi(p̂i, wi, D, n), ni(p̂i, wi, D, n), σi(p̂i, wi, D, n))
denote the expected allocation of securities and payment for an agent reporting p̂i and
wagering wi ∈ [1,W ] when there are n other agents that draw reports according to D
and wagers from the fixed wager distribution. Let (yi(p̂i, wi, D,∞), ni(p̂i, wi, D,∞),
σi(p̂i, wi, D,∞)) = limn→∞(yi(p̂i, wi, D, n), ni(p̂i, wi, D, n), σi(p̂i, wi, D, n)). We
can now formally define incentive compatibility in the large.

Definition 7. A wagering mechanism is incentive compatible in the large if, for any D
with full support over [0, 1], and any p̂i and wi,

piyi(pi, wi, D,∞) + (1− pi)ni(pi, wi, D,∞)− σi(pi, wi, D,∞)

≥ piyi(p̂i, wi, D,∞) + (1− pi)ni(p̂i, wi, D,∞)− σi(p̂i, wi, D,∞).

To show that the PCM satisfies incentive compatibility in the large, we first show
that when the number of bettors is large, no single agent can affect the security price
π; that is, agents are price-takers in the large market limit. The second step is to show
that price takers have no profitable manipulations, which follows immediately from
Theorem 3.

Theorem 4. The parimutuel consensus mechanism satisfies incentive compatibility in
the large.

Proof. Let πn denote the price defined by the PCM in expectation when there are
n agents drawing reports from D, as well as agent i reporting p̂i, and let π∞ =
limn→∞ πn. We first show that π∞ exists. For contradiction, suppose otherwise. Fix
ε > 0. Then there exist arbitrarily large N1, N2 such that |πN1 − πN2 | > ε for some
ε > 0. Suppose without loss of generality that πN1 > πN2 + ε. Note that we can
rewrite the equilibrium condition, Equation 1,

π =

∑
j:p̂j>π

wj + c2
∑
j:p̂j=π

wj∑
j:p̂j 6=π wj + (c1 + c2)

∑
j:p̂j=π

wj

Therefore, πN1 and πN2 are defined by

πN1 =

∑
j 6=i:p̂j>πN1 w̄ + c2

∑
j 6=i:p̂j=πN1 w̄ + y1wi∑

j 6=i:p̂j 6=πN1 w̄ + (c1 + c2)
∑
j 6=i:p̂j=πN1 w̄ + wi

(2)
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πN2 =

∑
j 6=i:p̂j>πN2 w̄ + c2

∑
j 6=i:p̂j=πN2 w̄ + y2wi∑

j 6=i:p̂j 6=πN2 w̄ + (c1 + c2)
∑
j 6=i:p̂j=πN2 w̄ + wi

(3)

Where y1 = 1 if p̂i > πN1 and y = 0 if p̂i < πN1 , and similarly for y2 in Equation 3
(for simplicity of notation, we ignore the case where p̂i = π, but it can be handled
similarly). We can replace wagers wj by w̄ because we are interested in the price in
expectation.

Since we can choose N1 and N2 to be artbitrarily large, the sum of all wagers wj
becomes large, and the effect of the wager wi becomes arbitrarily small. Therefore,
πN1 and πN2 become arbitrarily close to one another, violating the assumption that
they are bounded apart by ε. Thus, π∞ exists.

To see that π∞ is independent of p̂i, we divide both the numerator and denominator
of Equation 2 by N1 and let N1 →∞. The equilibrium condition becomes

π∞ =
Prx∼D(x > π∞) + c2Prx∼D(x = π∞)

Prx∼D(x 6= π∞) + (c1 + c2)Prx∼D(x = π∞)

Since this equation has no dependence on p̂i (or wi), π∞ is independent of p̂i.
It now follows immediately from Theorem 3 that the PCM satisfies IC-L, since any

profitable manipulation must alter the security price. But in the limit as the number of
agents goes to∞, it is impossible for i to affect the price π∞.

5 Simulations
We tested the incentive compatibility of the PCM on a data set consisting of probability
reports gathered from an online prediction contest called ProbabilitySports Galebach
[2004].4 The data set consists of probabilistic predictions about the outcome of 1643
National Football League matches from the start of the 2000 NFL preseason until the
end of the 2004 season. For each match, between 64 and 1574 players reported their
subjective probability of a fixed team (say, the home team) winning the match. Each
match was scored according to the Brier scoring rule, with points contributing to a
season-long scoreboard.

ProbabilitySports users submitted probabilities but not wagers. We generated wa-
gers from a variety of Pareto distributions. Pareto distributions are a natural choice
as they approximately model the distribution of wealth in a population. A Pareto dis-
tribution is defined by two parameters: a scale parameter k, which has the effect of
multiplicatively scaling the distribution, and a shape parameter α, which affects the
size of the distribution’s tail. To allow for a fair comparison between distributions and
instance sizes, we scaled each set of randomly generated wagers so that the average
wager is 1. This means that changing the scale parameter has no effect, as the wagers
are rescaled anyway. Therefore, we fix the scale parameter to 1 and vary only the shape
parameter.

The first Pareto distribution we use for wager generation has α = 1.16, which
is often described as “20% of the population has 80% of the wealth,” and classically

4We thank Brian Galebach for providing us with this data.
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% Agents With
Profitable
Misreports

Average
Profit

Average Wager
per Profitable

Misreport

Average
Misreport
Distance

Pareto(α = 1.16) 0.07 1.55 118.8 0.044
Pareto(α = 3) < 0.01 0.03 5.76 0.015

Uniform 0 n/a n/a n/a

Table 1: Profitable misreports under Pareto and uniform wager generation.

viewed as a realistic distribution of wealth. Second, we use α = 3, which produces
a more equal distribution of wagers in comparison to α = 1.16. Finally, we consider
a uniform distribution of wagers (that is, wi = 1 for all agents), corresponding to a
situation either where all agents are equal, or where they do not have the opportunity
to choose their wager (as in the ProbabilitySports competition). Note that the uniform
distribution is the limit of the Pareto distribution as α→∞.

Our first step was to examine the entire dataset. For each of the 1643 matches
and each wager distribution, we randomly generated a set of wagers drawn from that
distribution. For each set of wagers we chose 50 random agents and simulated 101
reports for them in the range {0, 0.01, . . . , 0.99, 1}.5 For each report, we computed the
agent’s expected utility, taking their true belief to be their original report pi. If there
exists a misreport p̂i 6= pi that yields a higher utility than reporting their true belief,
then the agent has a profitable misreport.

The results are summarized in Table 1. We report four statistics. The ‘% Agents
With Profitable Misreports’ column states the percentage of agents that are able to
benefit from misreporting. The ‘Average Profit’ column gives, out of those agents with
a profitable misreport, the average benefit that the agent can gain from misreporting
optimally, over and above her utility from reporting truthfully. The ‘Average Wager
per Profitable Misreport’ column gives the average wager of agents with a profitable
misreport available. Finally, the ‘Average Misreport Distance’ gives, for those agents
with a profitable misreport, the average distance between the optimal misreport and the
true belief.
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Figure 1: Profitable misreport characteristics for varying wager distributions and vary-
ing numbers of agents, n.

5In principle, our setup allows agents to report at a higher precision than this, so there will be some
possible misreports that we do not detect. However, we believe that considering reports of only multiples
of 0.01 is reasonable, due to limited cognitive capacity of the agents and the practical constraints of many
wagering systems.
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For wagers generated from a Pareto distribution with α = 1.16, we found 55 prof-
itable misreports (out of 82,150 agents that we checked), which means that only around
0.07% of the agents that we checked had a profitable misreport. It is striking to con-
sider the makeup of this small percentage of agents. The average wager of these agents
is 118.8 (recall that each set of wagers is scaled so that the average wager is 1). What
we are seeing is that only agents with very, very high wagers have sufficient power to
change the price π. In contrast, the average profit that these agents obtain by misreport-
ing is only 1.55, suggesting that even these high-wager agents are unable to have too
large an effect on the security price π. This average profit is on the order of 1-2% of
the misreporting agents’ wagers – arguably an insignificant amount. For those agents
that do misreport, the optimal misreport only differs from their belief by around 0.04.

As α increases, the number of agents with opportunity to misreport decreases. In-
deed, for the uniform wagers, we did not find a single opportunity to profitably mis-
report. This is not surprising, since when wagers are uniform and there are a large
number of agents, no agent will ever be able to significantly affect the price.

So for the full data set, with 64 ≤ n ≤ 1574 agents per match, opportunities to prof-
itably misreport are scarce, as we would expect because the PCM satisfies IC-L. But
what about instances with fewer agents? To investigate smaller instances, we subsam-
pled smaller values of n from the complete set of reports and ran the same simulation.
For each match, each value of n ∈ {10, 20, 30, 40, 50}, and each wager distribution,
we randomly sampled n reports and generated wagers. For every instance generated in
this way, we tested every agent to see whether they had a profitable misreport.

Figure 1(a) shows how the percentage of agents that can profitably misreport changes
with instance size. Even with only 10 agents per instance, there are relatively few op-
portunities to profitably misreport, with around 10% of all agents being able to do
so. This fraction decreases quickly as n increases – for instances with 50 agents, less
than 2% of agents are able to profitably misreport. Interestingly, all wager distributions
exhibit approximately the same susceptibility to manipulation, in contrast to the full in-
stances. We speculate that this is because, while high-wager agents are more likely to
have profitable manipulations available, their existence also prevents low-wager agents
from being able to manipulate, thus rendering the existence of high-wager agents some-
thing of a wash for small n. For large n, the latter effect disappears, since low-wager
agents are unable to profitably misreport, even in the absence of high-wager agents.

Figure 1(b) shows how the average value of each profitable misreport changes with
n, where the value of a profitable misreport is the difference in expected utility between
the agent’s optimal misreport and their truthful report. Interestingly, we see three very
different trends depending on the wager distribution, all of which are consistent with
the results on the full dataset. For α = 1.16, the average value of a misreport steadily
increases with n, as high-wager agents (who have high-value misreports) become more
and more frequent, while low-value misreports become less frequent. With uniform
wagers, the value of a misreport quickly decreases with n. With only 10 agents, a
misreporting agent may be able to affect the price quite significantly, however with
increasing n, misreports will consist of only being able to make small adjustments to
the security price. For α = 3, the value of a misreport remains approximately constant
as n increases, suggesting some combination of the two previous effects.

Figure 1(c) shows how the average wager of agents with a profitable misreport
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changes with n. For uniform wagers this line is flat, since all agents have wagerwi = 1.
The other two wager distributions display increasing wagers, which is again explained
by increasing frequency of high-wager agents (with this frequency increasing faster for
α = 1.16 than for α = 3), and decreasing frequency of low-wager agents that are
actually able to profitably misreport.

Finally, in Figure 1(d) we plot the average distance between a profitable misreport
and an agent’s true belief. In contrast with the other statistics that we consider, this
one is actually relatively flat as n increases (with the exception of a significant drop
from n = 10 to n = 20). This tells us that even for small numbers of forecasters,
misreporting is limited to agents with beliefs fairly close to the price π and does not
significantly affect the equilibrium price.

We note that we have considered an omniscient setting where manipulating agents
have precise knowledge of the reports of other agents. In practice, of course, the ma-
nipulating agent has uncertainty about her opponents. A misreport is risky, involving
some possibility of being forced to buy securities at a price favorable to her misreport
but not her true belief. High-budget agents have the most opportunities to misreport
but also the most to lose if they miscalculate.

6 Conclusion
We have provided an axiomatic justification of the parimutuel consensus mechnanism.
While no wagering mechanism can satisfy anonymity, individual rationality, budget
balance, Pareto optimality, sybilproofness, envy-freeness and incentive compatibility,
we show that the PCM comes very close in that it satisfies all of the first six properties,
and a relaxation of the seventh: incentive compatibility in the large. Subject to a mild
condition on the reports, the PCM is the only wagering mechanism that satisfies all six
properties. Via comprehensive simulations based on real contest data, we have shown
that on large instances, opportunities to profitably manipulate are extremely rare. Even
on small instances, the vast majority of agents cannot gain from misreporting.
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