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Abstract
Prediction markets are a way to yield probabilistic
predictions about future events, theoretically incorpo-
rating all available information. In this paper, we focus
on the confidence that we should place in the predic-
tion of a market. When should we believe that the
market probability meaningfully reflects underlying
uncertainty, and when should we not? We discuss two
notions of confidence. The first is based on the ex-
pected profit that a trader could make from correcting
the market if it were wrong, and the second is based
on expected market volatility in the future. Our paper
is a stepping stone to future work in this area, and we
conclude by discussing some key challenges.
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1. Introduction
A prediction market is a financial market directly designed
to crowdsource predictions. Bettors trade securities that
eventually realize some value based on the outcome of the
event in question. The price of the securities at any point
in time can be interpreted as a forecast probability that the
event occurs.

Given a prediction market forecast, it is natural to ask
to what extent it reflects the actual uncertainty surround-
ing the event in question. If two markets selling the exact
same contract disagree, which should we trust more? How
confident can we be in the accuracy of the (aggregated or
separate) predictions? Even though a prediction market has
no concept of margin of error, can we design an instrument
that properly conveys the accuracy of, and confidence in, a
market prediction? In this paper, we attempt to paint a way
forward to answering these questions.

By way of motivation, consider three scenarios predict-
ing the winner of a football match:

1. a normal professional regular-season game

2. a normal professional regular-season game where, 24
hours before the game, there will be a rapid COVID-
19 test to determine the eligibility of the star player

3. a pick-up game

Now imagine that a crowdsourced forecast (via whatever
method) gives Team A a 70% chance of winning 48 hours
before the game in all three scenarios. Intuitively, that
crowd knows that Game 1 is very precisely defined due to
years of detailed statistics and precise models. In Game 2,
we will treat it as known that the star player’s COVID-19
test is essentially a fair coin flip and that Team A has a 50%
chance of winning without their star and 90% with them.
That gives a multi-modal future probability [14]: 0.5*90%
+ 0.5*50% = 70%. Finally, the Game 3 estimate is based on
scant information; who knows who may show up to play or
what may happen? For all three games, 70% for Team A is
our probability, but that 70% number is distilling intuitively
very different states of uncertainty about the outcomes.

In this paper, we ask whether it is possible to formalize
that feeling of confidence: to ascertain and explain which,
if any, of the three football matches is most reminiscent of
a given real-world probabilistic prediction. That is, we seek
to develop a theory of confidence in predictions. While we
feel that this is an intriguing topic in any setting where
predictions are made, we will focus our attention on predic-
tion markets, given their widespread use and influence in
popular forecasting domains such as sports and politics.

Related Work A large body of literature focuses on the
relative accuracy of prediction markets and other wisdom-
of-crowds forecasts compared to polls and traditional expert
forecasting methods [18, 19, 6, 9, 15]. However, the major-
ity of these papers do not formally examine the notion of
confidence, or consider ex-ante forecast accuracy. Closest
to the notion of market confidence, Berg et al. [3, 4] em-
pirically examine prediction market accuracy using data
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from the Iowa Electronic Markets. However, they focus on
vote share markets as opposed to probabilistic predictions.
Frongillo et al. [7] study the problem of aggregating proba-
bilistic beliefs when forecasters may have differing levels
of information, but assumes that information is provided
directly to the principal and not via a market.

Work on imprecise probabilities [1] has studied the prob-
lem of aggregating multiple imprecise probabilities [13, 17,
12], generally from an axiomatic perspective. Other work
has considered the meaning and necessity of a notion of
second-order probabilities to express uncertainty over a
probability [2, 10, 11, 14]. These are relevant literatures for
the direction we propose, although to our knowledge, exist-
ing work does not directly shed light on market confidence.

2. A Confidence Measure from the Efficient
Market Hypothesis

Why do we trust that (prediction) market prices reflect the
underlying value of an asset? The efficient market hypothe-
sis states that markets incorporate all available information.
The idea behind the hypothesis is that if some relevant
piece of information is not reflected in the market price,
then someone with that piece of information could profit
from buying or selling the asset until its price reaches the
appropriate level. Since the existence of such profit oppor-
tunities is not a stable state of a market, in equilibrium we
would expect that all information is incorporated.

Unfortunately, real-world markets may not be fully effi-
cient, with information often failing to flow into the market.
In these cases, opportunities to profit can persist — indeed,
many people make careers out of finding and exploiting
these opportunities. But we can at least expect small profit
opportunities to persist longer and more reliably than large
ones. We expect a $20 bill to go unnoticed on the sidewalk
longer than a pot of gold!

In this section we exploit the ideas behind the efficient
market hypothesis to propose a general method for express-
ing confidence in a market prediction. To set the stage more
formally, suppose that we observe a prediction market for
a random bit of uncertainty to be realized at some known
time in the future. How can we estimate the probability p
that the random bit takes value 1, and how can we express
our confidence in that estimate?

Consider a prediction market with current price q. In our
football match example, we have q = 70% as the market
estimate. Now imagine that q is not actually representative
of p, the underlying randomness in the event. Say q = p+ε

for some ε > 0. Then an omniscient being with knowledge
of p would be able to make some expected profit $x > 0 by
moving the market price to p, exploiting all available trade
in the market by doing so. The existence of this undiscov-
ered profit opportunity would be at least mildly surprising,
certainly more surprising than q = p and all profit opportu-

nities having been exploited. In this sense we can quantify
exactly how surprised we would be if p = q+ ε : we would
be $x surprised. The greater the ε , the greater the market
inefficiency, and the greater the surprise.

Real-world prediction markets incorporate trading fees,
may have low liquidity, or cap the amount that a single
trader can invest. Tying up capital also entails opportunity
cost. All of this distorts our ability to infer a probability
from the market. For example, suppose that a market plat-
form charges a flat 5% fee on the amount paid in any trade.
Then, to make a profit, a trader must be able to buy or sell
securities at a price at least 5% removed from what she
estimates to be their value. In such a market, we could only
expect the discovery of an accurate probability up to a 5%
margin of error. In other words, if the true probability p was
anywhere within 5% of the market price q, the omniscient
profit would be $0, just the same as if p = q exactly.

This discussion therefore yields a natural way to discuss
uncertainty in probabilities arising from prediction markets.
For any market, and any probability p, we can provide an
exact amount of money that quantifies how surprised we
would be if the true probability took value p. This method
is very general. We simply put ourselves in the shoes of a
(budget unconstrained) omniscient trader who knows that
p is the true probability that the event occurs. Then we
imagine participating in the market, exhausting all possible
trades that yield a positive expected profit, net of fees. The
omniscient’s expected profit $x is our level of surprise,
should the true probability indeed be p.

Conversely, for an amount of money $x, we can consider
the set of all possible true probabilities that would yield an
omniscient profit of at most $x. In this way we can define
an “$x margin of error” for any prediction market, as the
set of probabilities that are consistent with the current state
of the market up to an $x level of surprise.

Note that many features of a market that we intuitively
associate with increased accuracy will also be associated
with narrow margins of error: high liquidity, no investment
caps, and low fees. All of these features increase the (ex-
pected) profit that an omniscient trader could extract from
participating in the market, shrinking the space of true
probabilities that would result in a profit less than $x.

Consider (hypothetical) prediction markets for the pro-
fessional and pickup football matches described earlier.
Due to the high information flow and level of interest in the
professional match, we would expect a thick market with
many opportunities for trade. The margin of error in this
market will be narrow, because a trader with knowledge
that the market was wrong could make a large profit. On the
other hand, we would expect the pickup game market to be
thinly trafficked. Even a trader who had precise knowledge
of the capabilities of the teams would be able to make very
little money. The margin of error in this market would be
wide, reflecting a low confidence in the market estimate.
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One can imagine prediction market estimates being re-
ported in this way. For example, a data journalist could
report that the probability of Joe Biden being elected presi-
dent is 65%, with the $1000 margin of error being between
57% and 70%. A market with a narrower margin of error at
the $x level should be more trustworthy than a market with
a wider margin of error.

This method can even extend to settings with multiple
markets for the same event, or situations with very general
betting structures that need not take the form of conven-
tional prediction markets. When there are multiple markets
(say, two different platforms each having a market for the
same event), we can imagine an informed trader who is
able to invest in all markets, profiting from each one. Since
a trader can make higher expected profit from participat-
ing in two markets than just one, the margin of error that
results from considering multiple markets will be no wider
than the margin of error from considering a subset of those
markets. Once again, this matches our intuition; additional
information should not make us less confident in our pre-
diction. Similarly, in any betting situation, we can ask how
much profit a bettor with infinite budget and precise knowl-
edge of the underlying true probability p could make in
expectation, given the bets laid down by the other parties.

3. Confidence as Volatility

Let us return to Game 2 from the introduction, in which a
50/50 random event will occur before the football match
in question, the outcome of which will inform us whether
Team A has a 50% or a 90% chance of winning the match.

Can we say we’re confident in today’s estimate of 70%?
By the measure we suggest in Section 2, yes. The infor-
mation structure is public so we expect plenty of traders
willing to bet if the implied odds deviate from 70% in either
direction. But in another sense, no. We’re expecting new
information, 24 hours before the game, that will render the
70% estimate wrong in hindsight. A layperson told that a
probabilistic prediction has high confidence would be taken
aback to see the prediction change drastically the follow-
ing day. We can capture that notion of confidence (or lack
thereof) by measuring the expected volatility. A prediction
with high expected volatility indicates, in our toy example,
additional layers of uncertainty that will be resolved before
the event itself resolves.

In financial markets, options and other derivatives reveal
the distribution and variance of their underlying instru-
ments. For example, a butterfly option pays the absolute
difference between the market price at time t1 and the price
at time t2: |pt1 − pt2 |. Such contracts could be traded in a
market secondary to any prediction, allowing us to estimate
the volatility of the primary prediction.

In other words, a second-order market can predict volatil-
ity in the original market. To be clear, second-order proba-
bilities can always be collapsed into first-order probabili-

ties [14]. Nonetheless, the concept of second-order proba-
bilities are well-defined and capture the expectation of new
information that will change our probability estimate. For
the example of Game 2, the price of the butterfly option
would reveal that the current prediction, a 70% chance of
Team A winning, is expected to change by ±20% exactly
when the COVID-19 test occurs. This would reflect a lack
of confidence in the prediction, at least relative to that point
in the future.

We believe that this “volatility” notion of confidence is
complementary to the “$x margin of error” notion of confi-
dence. One can imagine scenarios, such as the Game 2 ex-
ample, where the $x margin of error is very small while the
volatility is large. The converse appears possible, but less
likely: a high $x margin of error implies high uncertainty
about the current prediction, which suggests volatility of
the price in the future. In any case, both measures together
may give a clearer picture of the market’s confidence.

4. Discussion and Challenges
We have proposed two ways to measure the confidence
of a prediction market forecast; one appealing to the effi-
cient market hypothesis and the other concerned with the
expected volatility in the market. However, before these
notions can be used, they need to be validated empiri-
cally and/or theoretically. A natural step would be to check
whether high-confidence predictions are in fact correlated
with accuracy, as measured by a proper scoring rule such as
the Brier score [5, 8] that rewards accurate forecasts more
than inaccurate ones in expectation.

The notions of confidence in Sections 2 and 3 can both be
interpreted in terms of the value of information acquisition.
In Section 2, an equivalent interpretation of the $x margin of
error is that it contains all the predictions that could result if
a forecaster spent $x acquiring new information (otherwise,
a forecaster could make greater than $x profit from the
market by spending only $x on information acquisition,
violating the efficient market hypothesis1). In Section 3, the
expected market volatility expresses how much we expect
the prediction to change as new information comes to light.
High expected volatility says that the new information will
be highly valuable compared to old information. Further
exploring the relationship between value of information
and market confidence may be fruitful.

Finally, much of our discussion has implicitly assumed
that every event has some inherent and unknowable, yet
quantifiable and well-defined, uncertainty occurring at a
precise moment in time. Alternative models are of course
possible, and may affect how we define and think about
uncertainty. The interplay between these ideas and other
game-theoretic notions of probability [16] may also be
fruitful.

1. In reality, we don’t expect markets to be so efficient that this holds
exactly.
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