
Preventing Arbitrage From Collusion When Eliciting Probabilities

Rupert Freeman,1 David M. Pennock,1 Dominik Peters,2 Bo Waggoner3
1Microsoft Research, 2Carnegie Mellon University, 3CU Boulder

rupert.freeman@microsoft.com, dpennock@microsoft.com, dominikp@cs.cmu.edu, bwag@colorado.edu

Abstract

We consider the design of mechanisms to elicit prob-
abilistic forecasts when agents are strategic and may
collude with one another. Chun and Shachter (2011) have
shown that when agents may form coalitions, many known
mechanisms for elicitation permit arbitrage, allowing the
coalition members to guarantee themselves higher pay-
ments by misreporting their beliefs. We consider two
approaches to protect against colluding agents. First, we
present a novel strictly proper mechanism that does not
admit arbitrage provided that the reports of the agents
are bounded away from 0 and 1, a common assumption
in many settings. Second, we discover strictly arbitrage-
free mechanisms that satisfy an intermediate guarantee
between weak and strict properness.

1 Introduction
Suppose that a decision maker, the principal, asks an
agent to estimate the probability that it will rain tomorrow.
The principal would like the agent to respond with their
true belief. The principal can incentivize truthfulness by
asking the agent for the prediction today, then paying the
agent an amount of money tomorrow that depends on
whether it actually rained and how accurate the prediction
was. Payment schemes in this setting are called scoring
rules. For example, usingBrier’s (1950) famous quadratic
scoring rule, the principalwould pay the agent $1−(1−p̂)2
if it rains, and $1 − p̂2 if it does not, where p̂ is the
probability that the agent reported. For example, if p̂ =
0.6, then the agent earns $0.84 if it rains and $0.64
otherwise. Calculus shows that if the agent wishes to
maximize their expected payment, it is uniquely optimal
for the agent to report their truthful subjective belief.
Scoring rules with this property are called strictly proper.
The principal may wish to obtain an estimate from

several agents. If each agent is paid their quadratic score,
every agent is incentivized to report truthfully, just as in
the single-agent case. However, French (1985) observed
that the quadratic score may not be incentive compatible
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if agents are able to collude. Assume that the agents know
each other, can communicate their beliefs, and can trans-
fer money among themselves. Suppose three agents were
to truthfully report p̂ = (0.2,0.4,0.6). Then the quadratic
score pays them a total of $0.36+ $0.64+ $0.84 = $1.84
if it rains, and $0.96 + $0.84 + $0.64 = $2.44 otherwise.
If the group instead decided to calculate their mean be-
lief (0.4) and report p̂ = (0.4,0.4,0.4), then quadratic
score payments are $0.64 + $0.64 + $0.64 = $1.92 if
it rains, and $0.84 + $0.84 + $0.84 = $2.52 otherwise.
In both cases, the group obtains strictly more money
than before. They could then distribute their gains in
some way so that each member is strictly better off, no
matter the outcome. This example is general: groups
with at least some disagreement are always strictly bet-
ter off if they report their mean belief. French (1985)
shows that this is true not only for Brier’s quadratic rule,
but for every concave scoring rule. Chun and Shachter
(2011) termed this phenomenon arbitrage, since it al-
lows groups of colluding agents to risklessly increase
their payoff. They showed that all strictly proper scoring
rules, whether concave or not, permit arbitrage, and that
more complicated multi-agent rules are also vulnera-
ble, including market scoring rules (Hanson 2003) and
competitive scoring rules (Kilgour and Gerchak 2004;
Lambert et al. 2008).
We may hope that collusion of this type is uncom-

mon due to coordination and communication difficulties.
However, it is often the case that forecasters are assigned
to small groups for the purposes of deliberation before
reporting their probabilities.1 While deliberation of this
type can improve forecast accuracy by encouraging in-
formation sharing, it also provides an opportunity for
collusion. Further, the profit opportunitymight encourage
third parties to act as hidden intermediaries, by collect-
ing individual reports, reporting aggregate beliefs to the
principal, and then keeping the gain from arbitrage.
Wide-spread arbitrage can come at a high cost to the

1For example, the Good Judgment Project (Tetlock and
Gardner 2015), the winning competitor in the recent IARPA
ACE forecasting competititon, employed this technique.



principal’s goals. For example, if the principal plans to
pool the reports into an aggregate forecast, the result
will be distorted.2 In our example, all colluding agents
report the same probability, thereby hiding the true level
of disagreement among agents, which may cause the
principal to have too much confidence in an aggregate
forecast. Misreports due to arbitrage also obscure the
forecasters’ relative accuracy, which is problematic if the
principal wants to identify the most accurate forecasters.
Fundamentally, colluding agents are extracting additional
payment, at the expense of either the principal or some
other agents, without contributing correspondingly valu-
able information.
Chun and Shachter (2011) hoped to develop a mech-

anism resistant to collusion, but concluded that it “is
still an open question whether there is any strictly proper
mechanism that does not admit arbitrage, but it seems
unlikely.” The question remains open. However, if either
strict properness or no-arbitrage is slightly weakened, we
show that collusion-proof mechanisms do exist.
First, in Section 3, we design a strictly proper mech-

anism that does not admit arbitrage as long as there is
an ε > 0 such that each agent report is between ε and
1 − ε . In practice, this is a mild restriction. For instance,
the prediction market PredictIt3 (which operates by con-
tinuous double auction) does not allow trades at less
than 1c or more than 99c, equivalent to setting ε = 0.01.
Systems based on the popular logarithmic scoring rule
often impose a similar bound on reports in order to avoid
infinite agent losses, which occur whenever an agent
assigns probability zero to the outcome that is eventually
realized. Each of the mechanisms studied by Chun and
Shachter (2011) provides arbitrage possibilities for every
possible profile of agent reports with at least some dis-
agreement. In contrast, our mechanism avoids arbitrage
in almost all cases, except for agents reporting extremal
beliefs. A drawback of our mechanism is that, when
choosing ε small, very large payments may be required.
If payments on extreme instances are not high enough,
then there exist instances where the average report is
close to 0.5 on which all agents receive almost indis-
tinguishable scores. While this may limit the practical
viability of our scheme, the existence of a no-arbitrage
mechanism for a wide class of agent reports sheds a
new optimistic light on Chun and Shachter’s conjecture,
prompting hope for the existence of a fully arbitrage-free,
strictly proper mechanism.

Second, in Section 4, we design weakly proper mech-
anisms that fully avoid arbitrage for unrestricted agent
reports. We begin by studying mechanisms where an

2The unweighted arithmetic mean does not change if collud-
ing agents report their group mean, as in our example. However,
the principal may wish to compute a weighted mean, a geo-
metric mean (Genest and Zidek 1986), or another aggregate
measure such as a supra-Bayesian inference (Morris 1977).

3https://www.predictit.org/

agent’s payoff depends only on their own report. We
fully characterize the set of arbitrage-free and weakly
proper scoring rules as those that offer at most two sets
of conditional payments, for example paying $1 if and
only if the agent’s report is greater than 0.5 for the true
outcome. Under these mechanisms, truth-telling is an
undominated strategy, but not uniquely. By combining
these rules with a rule that pays each agent the score of
the median report, we obtain arbitrage-free mechanisms
that are weakly dominant proper: truth-telling is the
unique undominated strategy. Weakly dominant proper
mechanisms are close to strictly proper: incentives are
not strict only if some profiles are impossible. We con-
sider these weakly dominant proper mechanisms to be
compelling practical options for a principal who wants
to avoid collusion.

2 Preliminaries
Let X be a Boolean4 random variable: an event with
possible outcomes 0 and 1. Let N be a set of n agents. Each
agent has a belief pi ∈ [0,1] as to the probability that X =
1, and reports p̂i ∈ [0,1]. Following the nomenclature
of Chun and Shachter (2011), a contract function Π :
[0,1]n × {0,1} → Rn maps agent reports and the event
outcome to payments. A positive payment is a payment
from the mechanism to the agent. We refer to agent i’s
payment as Πi . Contract functions are a general class
of mechanisms that include standard proper scoring
rules (Brier 1950; Savage 1971; Gneiting and Raftery
2007), market scoring rules (Hanson 2003), competitive
scoring rules (Kilgour and Gerchak 2004), and wagering
mechanisms (Lambert et al. 2008).
A contract function Π is weakly proper if for every

agent i with belief pi , every vector of other agents’
reports p̂−i , and every p̂i ,

piΠi((pi, p̂−i),1) + (1 − pi)Πi((pi, p̂−i),0)
≥ piΠi((p̂i, p̂−i),1) + (1 − pi)Πi((p̂i, p̂−i),0).

We say that Π is strictly proper if the inequality is
strict whenever p̂i , pi . Thus, for a strictly proper Π,
the expected payoff to i is uniquely maximized when i
reports the true belief pi .

A contract functionΠ admits arbitrage if there exists a
coalition C ⊆ N and vectors q = (qi)i∈N and r = (ri)i∈N
with qi = ri for all i < C for which∑

i∈C

Πi(q, x) ≥
∑
i∈C

Πi(r, x) for each x ∈ {0,1},

and the inequality is strict for some x. This definition is
adapted from Chun and Shachter (2011), who define a
version that requires that arbitrage is possible whenever
agents disagree. We say that a contract function that does
not admit arbitrage is arbitrage free.

4In the full version we show how to extend our results to
any finite discrete outcome space.
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Figure 1: Illustration of Theorem 1 for an agent with
belief p = 0.4 who reports p̂ = 0.6. The horizontal
axis is belief and the vertical axis is score. The line
segment is s(0.6; p), the expected score for report 0.6
under belief p. Its endpoints are the scores s(0.6,0) and
s(0.6,1) in outcomes 0 and 1, respectively.

A scoring rule, s : [0,1] × {0,1} → R, is a function
that assigns a real-valued score to an agent based only on
the agent’s report and the realized outcome. We say that
s is weakly (resp. strictly) proper if the corresponding
contract function Π that pays each agent

Πi(p̂, x) = s(p̂i, x)

is weakly (resp. strictly) proper.
It is easy to see that a contract function is weakly (resp.

strictly) proper if, and only if, for all fixed reports of the
other agents p̂−i, the payment to agent i takes the form
of a weakly (resp. strictly) proper scoring rule.

Scoring rule characterization. We will utilize the
well-known characterization of proper scoring rules (Mc-
Carthy 1956; Savage 1971; Schervish 1989; Gneiting
and Raftery 2007).
Theorem 1. Scoring rule s is (strictly) proper if and only
if there exists a (strictly) convex function G : [0,1] → R
with

s(p̂, x) = G(p̂) + dG(p̂) · (x − p̂),
where dG(p̂) is a subgradient of G at p̂. Furthermore,
G(p) is the expected score for truthul reporting with
belief p.

Write s(p̂; p) for the expected score of report p̂ under
belief p. From Theorem 1 and linearity of expectation,
we obtain s(p̂; p) = G(p̂) + dG(p̂) · (p − p̂). Note that
s(p; p) = G(p) as claimed.
A pictorial representation (Gneiting and Raftery 2007)

is shown in Figure 1. Given G and a fixed report p̂ = 0.6,
the function s(0.6; p) traces a subtangent line of G,
tangent at p = 0.6. Its slope is equal to the subgradient
dG(p̂). The agent’s score in outcome 0 or 1 is the height
of this subtangent at the vertical line p = 0 or p = 1,

respectively. An agent who believes p = 0.4 and reports
p̂ = 0.6 expects to receive payment equal to the height
of the subtangent at the vertical line p = 0.4, an amount
strictly worse than G(0.4), their expected payment when
reporting truthfully.

3 An Arbitrage-Free Rule Under
Bounded Reports

In this section we present a strictly proper contract
function. It does not permit arbitrage when the reports of
the agents are bounded in (ε,1 − ε), for some ε > 0. We
denote our contract function Mk , where k is a parameter
that is tuned depending on ε . Payments are defined by
Mk

i (p̂, x) = (
∑n

j=1 p̂j −
n
2 )

k + k(x − p̂i)(
∑n

j=1 p̂j −
n
2 )

k−1,
where k is an even integer. We first verify that Mk is
strictly proper.5
Lemma 2. Mk is strictly proper.

Proof. The result follows from Theorem 1, setting
G(p̂i) = (

∑n
j=1 p̂j −

n
2 )

k . �

To gain intuition, let us describe Mk in words, with
the assistance of Figure 2. The blue curve is the function
Ḡ : [0,n] → R defined by Ḡ(p̂) = (

∑n
j=1 p̂j −

n
2 )

k ,
which defines payoffs over the space of all possible
reports. For fixed reports of other agents p̂−i summing
to c, agent i is faced with a scoring rule derived from
G(p̂i) = (c+ p̂i− n

2 )
k , corresponding to a width-1 interval

of the function Ḡ. An interesting feature of Mk is that
each agent receives the same expected payment from
truthful reporting: Pictorially, each agent’s payments are
determined by a subtangent of Ḡ taken at the same point.
We now show that if it is possible to bound agents’

reports away from 0 and 1, then there exists a k for which
Mk is arbitrage free. The proof proceeds by first showing
that the payment a group of agents receives is a function
only of the sum of their reports, and that, while all reports
are within (ε,1 − ε), this function is increasing for X = 1
and decreasing for X = 0.
Theorem 3. Suppose there exists an ε > 0 such that
p̂j ∈ (ε,1− ε) for all agents j. Then Mk is arbitrage free
whenever k > n+2

2ε .

Proof. Consider reports p̂ and a coalition of agents
C = {1, . . . , |C |}, where |C | ≥ 2. Let us examine the
total payment to agents inC when X = 1. For conciseness,
given a subset S ⊆ N , we use the notation p̂S =

∑
j∈S p̂j

5While we may want to bound the reports away from
extremes, we do not require any assumptions on the agents’
beliefs. If beliefs fall outside of the range of allowable reports,
strict properness implies that agents will prefer to report the
allowable report closest to their belief.
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Figure 2: Illustration of contract function Mk , k = 2, for agent 1 of four. The horizontal axis is the sum of all reports p̂i
and the vertical axis is score. We consider three examples: the sum of the reports of agents 2, 3, and 4 is 0.25 (left), 1.5
(middle), and 3 (right). Each case induces a strictly proper scoring rule for agent 1, as in Figure 1: the expected score
function Ḡ is shown in solid blue along with subtangent s(0.6; p) in orange.

to denote the sum of reports of agents in S.∑
j∈C

Mk
j (p̂,1))

=
∑
j∈C

((p̂N −
n
2 )

k + k(1 − p̂j)(p̂N −
n
2 )

k−1)

= |C |(p̂N −
n
2 )

k−1 ©«p̂N −
n
2 +

k
|C |

∑
j∈C

(1 − p̂j)
ª®¬

= |C |(p̂N −
n
2 )

k−1(p̂N\C −
n
2 + k + (1 − k

|C | )p̂C)

Note that this is a function of p̂C and p̂N\C only. Now
we differentiate with respect to p̂C =

∑
j∈C p̂j :

d
d(p̂C)

©«
∑
j∈C

Mk
j (p̂,1)

ª®¬
= (k−1)|C |(p̂N−

n
2 )

k−2(p̂N\C−
n
2 + k + (1− k

|C | )p̂C)

+ (1 − k
|C | )|C |(p̂N −

n
2 )

k−1

= |C |(p̂N−
n
2 )

k−2 ((k−1)(p̂N\C−
n
2 + k + (1− k

|C | )p̂C)

+ (1 − k
|C | )(p̂N −

n
2 )

)
= k |C |(p̂N −

n
2 )

k−2 (k − 1 + (1 − 1
|C | )p̂N\C

+ (1 − k
|C | )p̂C −

n
2 (1 −

1
|C | )

)
We show that the derivative is positive whenever k > n+2

2ε .
The multiplicative factor k |C |(

∑n
i=1 p̂i − n

2 )
k−2 is always

positive because k is even, so we can ignore it and focus
on the remaining part of the expression:

k − 1 + (1 −
1
|C |
)p̂N\C + (1 −

k
|C |
)p̂C −

n
2
(1 −

1
|C |
)

> k − 1 −
k
|C |
|C |(1 − ε) −

n
2
= kε − 1 −

n
2
> 0

The first inequality comes from removing positive terms
and the fact that p̂j < 1 − ε for all j, and the final
inequality from the definition of k.
In particular, the positive derivative implies that any

coordination in which the colluding agents decrease the
sum of their reports results in them collectively receiving
a strictly lower payment when X = 1. Therefore, any
successful arbitrage must have the agents in C increase
the sum of their reports. But, because Mk is symmetric
in the possible outcomes, an identical argument shows
that if the agents in C increase the sum of their reports,
their total payment for outcome X = 0 would strictly
decrease. Hence, arbitrage is not possible if the colluding
agents change the sum of their reports. However, recall
that the expression for

∑
j∈C Mk

j (p̂,1) is a function of p̂C
and p̂N\C . Therefore, any group deviation that does not
change the sum p̂C does not change the total payment
for X = 1 or, symmetrically, for X = 0, and so cannot
constitute arbitrage. This completes the proof. �

Our next example demonstrates the failure of Mk to
be fully arbitrage free.
Example 1. Consider Mk with k = 2 (for higher k, a
similar exampleworks but requiresmore extreme reports).
Let p = (0,0,0,0.98,0.98). If X = 0, each of the last two
agents receives payment (1.96 − 2.5)2 − 0.98 · (1.96 −
2.5) = 0.8208. If X = 1, then each of them receives
(1.96 − 2.5)2 + 0.02 · (1.96 − 2.5) = 0.2808. Suppose
they both instead report 0.97 (so p̂ = (0,0,0,0.97,0.97)).
Now, each of the last two agents receives payment (1.94−
2.5)2 − 0.97 · (1.94 − 2.5) = 0.8568 if X = 0 and
(1.94 − 2.5)2 + 0.03 · (1.94 − 2.5) = 0.2968 if X = 1.
Under the manipulation, agents 4 and 5 receive higher
payments in both outcomes, constituting arbitrage.

We end this section by elaborating on the relationship
between k, n, and ε . Even for n = 5 agents and ε = 0.1
(reports bounded between 0.1 and 0.9), our bound on
k requires k > 35. Since payments are on the order of
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(
∑n

i=1 p̂i − n
2 )

k , the principal may have to make payments
as large as (5 − 5

2 )
35 ≈ 1013. Of course, these payments

can be scaled down by any constant while maintaining
strict properness, as is standard in elicitation settings
to deal with real-world budget constraints, but then it
becomes possible that agents in other profiles (say, when∑n

i=1 p̂i ≈ n
2 ) receive payments that are very close to 0, no

matter what they report. Designing a rule that provides
reasonable incentives to agents while also permitting
the principal a reasonable loss in the worst case is an
interesting question that we leave open.

4 Weakly Proper Arbitrage-Free Rules
In the previous section, we presented a contract function
that is strictly proper and arbitrage free when reports are
bounded away from 0 and 1. In this section, we relax
strict properness to weak properness, with the goal of
achieving fully arbitrage-free contract functions.

Weak properness on its own is a very weak guarantee.
Paying each agent a constant amount Πi(p̂, x) = d is
weakly proper, because no agent can profit by reporting
p̂i , pi . It is also arbitrage free, since the total payment
to any group of agents is also fixed by the mechanism
in advance. However, this is not a compelling contract
function; a constant score can hardly be called a scoring
function at all. Agents paid a fixed amount have no
incentive to gather or process information if there is even
a minimal cost to do so. We will consider two properties
to avoid such degenerate contract functions.
First, we want a contract function that distinguishes

between good and bad reports. To this end, we say that a
contract function Π satisfies weak distinguishability if,
whenever there exist agents i, j with p̂i = 0 and p̂j = 1,
we have Πi(p̂,0) > Πj(p̂,0) and Πi(p̂,1) < Πj(p̂,1). An
agent with a maximally accurate report should receive a
strictly higher payment than an agent with a maximally
inaccurate report. While this may seem like a trivial
property, it turns out that mechanism Mk from Section 3
actually fails weak distinguishability.

Second, observe that under the constant payment rule,
agents can misreport safely: even without knowing the
reports of the other agents, an agent can misreport and
be guaranteed to not regret their misreport once the other
reports are revealed. If a contract function is weakly
proper and does not permit safe misreports, we say that
it is weakly dominant proper. Formally, a weakly proper
contract function Π is weakly dominant proper if, for any
agent i with belief pi and any report p̂i , pi , there exist
reports p̂−i of the other agents such that

piΠi((pi, p̂−i),1) + (1 − pi)Πi((pi, p̂−i),0)
> piΠi((p̂i, p̂−i),1) + (1 − pi)Πi((p̂i, p̂−i),0).

Thus, for any misreport, there is a possible configuration
of others’ reports such that the expected value of the
misreport is strictly lower than the expected value of
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Figure 3: A generic scoring rule that is not 1-choice or
2-choice, with three particular choices highlighted.

reporting truthfully. Stated in game-theoretic terms, re-
porting truthfully is a weakly dominant strategy.6Weakly
dominant properness was implicitly defined, but not
named, by Freeman, Pennock, and Wortman Vaughan
(2017).

4.1 Weakly Distinguishing Scoring Rules
Let us more closely examine contract functions that
pay all agents according to a fixed scoring rule. Chun
and Shachter (2011) showed that all such rules admit
arbitrage whenever s is strictly proper. What if s is only
weakly proper? We know from our discussion above that
there exists at least one such rule—the constant payment
rule—that is arbitrage free. In this section, we provide a
complete characterization of the class of arbitrage-free
weakly proper scoring rules.

For any convex function G, write G(q) =
maxi∈I Si(q), for some index set I, where each Si

is an affine function defining contingent payments Si
0

and Si
1. Reporting p̂ is equivalent to choosing Si where

i = arg maxi∈I Si(p̂), the affine function tangent to G at
p̂. As a technicality, we assume no redundant choices;
that is, each Si is the unique optimal choice in expectation
for at least one belief.

Say that G consists of ` choices if it is piecewise linear
with ` ≥ 1 linear pieces, and call the corresponding
weakly proper scoring rule s an `-choice scoring rule.

Theorem 4. Suppose that a contract function pays all
agents according to a single proper scoring rule s. Then
the contract function is arbitrage free if and only if s is a
1-choice or 2-choice scoring rule.

6Translated to notions of dominance in game theory
(Shoham and Leyton-Brown (2008) provide an introduction),
strict properness corresponds to truthtelling being a strictly
dominant strategy, weakly dominant properness corresponds
to weak dominance, and weak properness corresponds to very
weak dominance.
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Proof. If s is 1-choice, then the corresponding contract
function is clearly arbitrage free since payments do not
depend on reports. If s is 2-choice, then the report
space [0,1] is divided into a low and a high region,
offering one affine function for each. Call these affine
functions S` and Sh. By convexity, it must be the case
that S`0 > Sh

0 and S`1 < Sh
1 . Any rearrangement of the

colluding agents’ reports in which more agents receive
contingent payments Sh decreases their total payment
if X = 0, while the reverse is true if the rearrangement
results in more agents with contingent payments S` . If the
rearrangement does not change the number of colluding
agents receiving contingent payments Sh and S` , then
the total payment remains unchanged for both X = 0 and
X = 1. Therefore no arbitrage opportunity exists.
For the reverse direction, suppose that s is not 1-

choice or 2-choice. So G is a maximum over at least three
affine functions Sa,Sb,Sc , each of which is the unique
maximizer for at least some q ∈ [0,1]. Generically, the
situation must be as pictured in Figure 3: convexity of
G dictates that Sa

0 > Sb
0 > Sc

0 and Sc
1 > Sb

1 > Sa
1 . We

will show that some fractions of agents with contingent
payments Sa and Sc can arbitrage by all switching to Sb .
Let p be a belief for which Sb is uniquely optimal (note
0 < p < 1 by construction); then in particular

pSb
1 + (1 − p)Sb

0 > pSa
1 + (1 − p)Sa

0

pSb
1 + (1 − p)Sb

0 > pSc
1 + (1 − p)Sc

0

implying that, for all α ∈ [0,1],

pSb
1 + (1 − p)Sb

0 (1)
> p

(
αSa

1 + (1 − α)S
c
1
)
+ (1 − p)

(
αSa

0 + (1 − α)S
c
0
)

Suppose an α fraction of agents are choosing Sa and a
1 − α fraction choose Sc . Consider the conditions for
which they have a higher average payoff than if they all
chose Sb , under outcomes X = 0 and X = 1 respectively.
Because the payoffs are strictly monotone affine functions
of α, there exist unique thresholds ᾱ,

¯
α such that:

αSa
0 + (1 − α)S

c
0 ≥ Sb

0 ⇐⇒ α ≥ ᾱ (2)
αSa

1 + (1 − α)S
c
1 ≥ Sb

1 ⇐⇒ α ≤
¯
α (3)

Now we claim
¯
α < ᾱ: if there exists α for which the

inequalities (2) and (3) hold simultaneously, we get
a contradiction with inequality (1). Intuitively, if the
mixture of Sa and Sc is better on average both when
X = 0 and when X = 1, then the mixture would be better
on average for belief p. This implies

¯
α < ᾱ.

So let α∗ be a rational number satisfying
¯
α < α∗ < ᾱ.

Write α∗ = n
n+m where n,m ∈ N and construct an

instance with n agents initially choosing Sa while m
agents initially choose Sc . Now suppose all agents switch
to selecting Sb . By (2) and (3) and the choice of α∗, their
average payoff strictly improves both when X = 0 and
X = 1. This proves an arbitrage opportunity. �

If s is 1-choice then every agent receives the same
payment, and so the contract function fails weak distin-
guishability. However, when s is 2-choice, agents are
separated into two groups based on their reports. Those
with higher reports (including p̂i = 1) get paid more than
those with lower reports (including p̂i = 0) when X = 1,
and less when X = 0. Therefore these rules satisfy weak
distinguishability. They are not weakly dominant proper
since an agent is always indifferent between any two
reports that induce the same contingent payments.
As a natural example of a 2-choice scoring rule, con-

sider the 0-1 score paying $1 iff the agent’s report favors
the true outcome: p̂ ≥ 0.5 and X = 1 or p̂ < 0.5 and
X = 0. This rule corresponds to the 2-piecewise-linear
function G(p̂) = max {p̂,1 − p̂}.

4.2 Weakly Dominant Properness and the
Median Rule

We now define a contract function that is arbitrage free
and weakly dominant proper. Suppose for convenience
that n is odd and fix a strictly-proper scoring rule s. We
will simply pay each agent the score (according to s) of
the median report.7 Formally,

Πi(p̂, x) = s(med(p̂), x).

The median rule, like any rule that pays according to an
aggregate statistic of all reports, is clearly arbitrage free.
In order for a group of colluding agents to change the
payments made by the mechanism, they must change the
value of the aggregate statistic, which strictly decreases
the total payment for some outcome.
Additionally, the median mechanism is weakly dom-

inant proper. For weak properness, consider an agent
i with belief pi and report p̂i . It is easy to see that
either med(p̂) ≤ med((pi, p̂−i)) ≤ pi or med(p̂) ≥
med((pi, p̂−i)) ≥ pi . In either case, i achieves a (weakly)
higher expected payment by reporting pi than p̂i .8
To show that the median mechanism satisfies the

additional requirement for weakly dominant properness,
suppose that agent i reports p̂i > pi (the case p̂i < pi
can be handled symmetrically). We must exhibit reports
p̂−i of the other agents for which i would have strictly
preferred to report pi . To do so, suppose that n−1

2 of
the other agents report p̂j < pi and n−1

2 of them report
p̂i < p̂j . If i had truthfully reported pi , the median
report would have been her report pi and she would
receive payment s(pi, x). Instead, the median report is
her misreport p̂i and she receives payment s(p̂i, x). By
strict properness of s, agent i strictly prefers the former.
We have proven the following theorem.
Theorem 5. The median payment rule is arbitrage free
and weakly dominant proper.

7If n is even, we can use the left or right median instead.
8That an agent’s expected score is a single-peaked function

of their report follows easily from Theorem 1.
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The median payment rule does not satisfy weak distin-
guishability, because it pays all agents identically.

4.3 Weakly Distinguishing and Weakly
Dominant Proper Contract Functions

We now combine the mechanisms from each of the
previous subsections to obtain a contract function that
preserves the desirable properties of both of them. Let
s be a 2-choice proper scoring rule, with corresponding
convex function G consisting of affine functions S` and
Sh , defining contingent payments Sh

0 < S`0 and Sh
1 > S`1 .

Let c = min{S`0 − Sh
0 ,S

h
1 − S`1 }. Further, let r be a strictly-

proper scoring rule bounded in the interval [0,1].
Define contract function s+ by

s+i (p̂, x) = s(p̂i, x) +
c

n + 1
· r(med(p̂), x).

That is, s+ pays each agent according to the sum of a
2-piecewise-linear proper scoring rule, and some suffi-
ciently small fraction of the median rule. In doing so,
it inherits the weak distinguishability of scoring rule s
and the weakly dominant properness of the median rule,
while preserving arbitrage-freeness.
Theorem 6. The contract function s+ is weakly distin-
guishing, weakly dominant proper, and arbitrage free.

Proof. Weak distinguishability follows immediately
from the definition. For weakly dominant properness, we
note that s+ is weakly proper since it is the sum of two
weakly proper rules. For any report p̂i , pi , there exist
reports of the other agents for which i would be better off
reporting pi than p̂i under the median rule. Therefore, i
would be better off reporting pi than p̂i under s+ too.

For arbitrage freeness, consider some colluding coali-
tion C, and two sets of reports q and q′ with qi = q′i
for all i < C. Consider scoring rule s from the defini-
tion of s+. Denote by L ⊂ [0,1] the low region of the
report space, in which agents receive contingent pay-
ments defined by S` . Let nL = |{i ∈ C : qi ∈ L}| and
n′L = |{i ∈ C : q′i ∈ L}|. Let H = [0,1] \ L denote the
high region, where agents receive contingent payments
defined by Sh, with nH = |C | − nL and n′H = |C | − n′L .
We consider two cases.

Case 1: Suppose that nL = n′L , which implies nH =
n′H . Then for each x ∈ {0,1} we have∑
i∈C

s+i (q, x)

= nLS`x + nHSh
x + |C |

c
n+1r(med(q), x)

= n′LS`x + n′HSh
x + |C |

c
n+1r(med(q), x)

=
∑
i∈C

s+i (q
′, x)+ |C | c

n+1 (r(med(q), x)−r(med(q′), x))

By properness of r, if r(med(q), x) > r(med(q′), x)
for some x ∈ {0,1}, then it must be the case that

r(med(q),1 − x) < r(med(q′),1 − x). Therefore, no arbi-
trage opportunity exists.

Case 2: Suppose that nL − n′L = n′H − nH > 0. The
opposite case is symmetric. Then we have∑
i∈C

s+i (q,0)

= nLS`0 + nHSh
0 + |C |

c
n+1r(med(q),0)

= n′LS`0 + n′HSh
0 + (nL − n′L)(S

`
0 − Sh

0 )

+ |C | c
n+1r(med(q),0)

≥ n′LS`0 + n′HSh
0 + c + |C | c

n+1r(med(q),0)
≥ n′LS`0 + n′HSh

0 + c + |C | c
n+1 (r(med(q′),0) − 1)

> n′LS`0 + n′HSh
0 + |C |

c
n+1r(med(q′),0) =

∑
i∈C

s+i (q
′,0)

The first inequality holds because nL − n′L ≥ 1 and
S`o − Sh

0 ≥ c, the second inequality because r is bounded
in [0,1], and the final inequality because |C | < n + 1.

That
∑

i∈C s+i (q,1) <
∑

i∈C s+i (q
′,1) follows similarly,

implying that no arbitrage opportunity exists. �

Note that arbitrage freeness does not in general follow
from combining two arbitrage-free rules, and that the
subtlety in the definition of s+ is necessary. Suppose
that we had instead defined s+ without a small enough
scaling of the median rule. In particular, suppose that
s is the 0-1 score defined earlier and r is the quadratic
score (s(p̂i, x) = 1 − (p̂i − x)2). Consider the contract
function that pays each agent s(p̂i, x) + r(med(p̂), x). If
p = (1,1,0) then the total payment to all agents is $1 if
X = 0 and $5 if X = 1. But if instead the agents report
p̂ = (0.5,0.5,0.5), their total payment is $2.25 if X = 0
and $5.25 if X = 1.

5 Conclusion
We have explored mechanisms for truthfully eliciting
probabilistic forecasts from individuals who may collude
with one another. When strict incentives for truthtelling
are required, the principal can avoid arbitrage provided
that reports are bounded away from extreme probabilities.
If incentives can be relaxed, then arbitrage can be avoided
with a mechanism in which truth-telling remains the
unique undominated strategy.
So far, we have only considered binary events. In the

full version, we provide an inductive construction that
extends contract functions defined for a binary random
variable to any random variable X with finitely many val-
ues. The constructed contract function first pays agents
based on their prediction for the event X = 0, and, if the
event X , 0 occurs, pays agents based on their predic-
tions conditioned on the event X , 0. Our construction
preserves properness of various strengths and arbitrage
freeness. The mechanisms we have presented can there-
fore be extended in a straightforward manner to elicit
predictions for any discrete random variable.
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Compelling and challenging open questions remain.
In particular, we still do not know whether a strictly
proper and fully arbitrage-free contract function exists.
In Section 3, we discussed an easier open problem:
Can a mechanism with similar guarantees to Mk be
designed that has stronger truth-telling incentives in
practice? Towards an impossibility result, one could
imagine adding additional constraints to the mechanism
design problem such as budget balance, requiring the
mechanism to pay out the same amount in total regardless
of the reports.
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