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Abstract

We consider the design of forecasting competitions in which
multiple forecasters make predictions about one or more in-
dependent events and compete for a single prize. We have two
objectives: (1) to award the prize to the most accurate fore-
caster, and (2) to incentivize forecasters to report truthfully, so
that forecasts are informative and forecasters need not spend
any cognitive effort strategizing about reports. Proper scoring
rules incentivize truthful reporting if all forecasters are paid
according to their scores. However, incentives become dis-
torted if only the best-scoring forecaster wins a prize, since
forecasters can often increase their probability of having the
highest score by reporting extreme beliefs. Even if forecasters
do report truthfully, awarding the prize to the forecaster with
highest score does not guarantee that high-accuracy forecast-
ers are likely to win; in extreme cases, it can result in a per-
fect forecaster having zero probability of winning. In this pa-
per, we introduce a truthful forecaster selection mechanism.
We lower-bound the probability that our mechanism selects
the most accurate forecaster, and give rates for how quickly
this bound approaches 1 as the number of events grows. Our
techniques can be generalized to the related problems of out-
putting a ranking over forecasters and hiring a forecaster with
high accuracy on future events.

1 Introduction
The study of probabilistic forecasting dates back to the
1950s when meteorologists developed proper scoring rules
as a way to both incentivize truthful predictions about fu-
ture events and compare the relative accuracy of differ-
ent forecasters (Brier 1950; Good 1952). Brier’s original
quadratic scoring rule is still widely used to motivate and
measure forecasting accuracy (e. g., Atanasov et al. 2016).
When forecasters are paid proportional to their quadratic
scores, they maximize expected payment by truthfully re-
porting their beliefs.

However, in typical forecasting competitions, forecast-
ers care not about maximizing expected score, but about
whether their forecasts are judged to be better than oth-
ers’. For example, in the Good Judgment Project, a recent
geopolitical forecasting tournament, the top 2% of forecast-
ers were awarded so-called “superforecaster” status (Tetlock
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and Gardner 2015), which (on top of bragging rights) gave
them full travel reimbursement to a superforecaster confer-
ence. On ProbabilitySports,1 participants predict the out-
comes of NFL games, competing for prizes that are awarded
to the highest-scoring forecaster in a given week or month.
In play-money prediction markets, forecasters often com-
pete for a place at the top of a leaderboard (e. g., Servan-
Schreiber et al. 2004). And the same phenomenon holds
for algorithmic forecasters; Netflix offered $1,000,000 to
the team whose machine learning algorithm could best pre-
dict how users would rate movies based on their past prefer-
ences,2 and the machine learning competitions run by Kag-
gle3 rank submitted algorithms based on how well they pre-
dict the labels of data points from an undisclosed test set.
One of Kaggle’s main uses today is for recruiters to hire the
developers of the best-performing algorithms (Harris 2013).

Unless they are designed with care, these winner-take-all
competitions can distort incentives, encouraging forecasters
to take big risks as opposed to truthfully reporting their be-
liefs. Lichtendahl and Winkler (2007) study a strategic game
between two forecasters reporting on a single event. In their
model, each forecaster wishes to maximize her utility, which
is assumed to be a mixture of a proper scoring rule pay-
ment and an (explicit or implicit) bonus for being the best
forecaster, with a parameter trading off these two compo-
nents. They show that when forecasters optimize for their
relative rank, they typically want to report more extreme
probabilities than those corresponding to their true beliefs.
Even putting truthfulness aside, we show that awarding a
prize to the forecaster with highest score does not guarantee
that high-accuracy forecasters are likely to win, and in fact
can lead to situations in which a perfect forecaster has zero
probability of winning.

In this paper, we present the Event-Lotteries Forecaster
Selection Mechanism (ELF). ELF borrows a trick from the
competitive scoring rule of Kilgour and Gerchak (2004), a
self-financed betting mechanism that truthfully elicits prob-
abilistic forecasts for single events. Under Kilgour and Ger-
chak’s mechanism, a forecaster’s payment depends on her
relative performance (measured by a proper scoring rule)

1www.probabilitysports.com
2www.netflixprize.com
3www.kaggle.com



compared with other forecasters. Specifically, her total pay-
ment is the difference between her own score and the aver-
age score of all other forecasters. For a single event, ELF
uses a similar idea to compute scores for all forecasters that
are non-negative and sum up to 1. Treating these scores as
a probability distribution over forecasters, ELF then runs a
lottery to determine the winner of the prize. With multiple
events, ELF runs one such lottery for each individual event,
eventually awarding the prize to the forecaster who has won
the most event lotteries.

In this way, ELF probabilistically selects a single winning
forecaster while incentivizing truthful forecasts for any se-
quence of independent events, regardless of the number of
events being predicted or the specific risk preferences of the
forecasters. We lower-bound the probability that ELF selects
the most accurate forecaster, and show that this bound ap-
proaches 1 as the number of events grows. Our techniques
generalize to other natural settings, such as the truthful rank-
ing of forecasters and hiring a forecaster with high accuracy
on future events.

We emphasize that using ELF as an incentive scheme does
not restrict the choice of whether and how to aggregate fore-
casts once they have been elicited. Indeed, ELF is not a sub-
stitute for a forecast aggregation algorithm, but a comple-
ment. The question of how to aggregate forecasts has been
studied extensively. Lichtendahl et al. (2013) show that un-
der a commonly-known public-private signal model, a sim-
ple average of “gamed” forecasts is more accurate than a
simple average of truthful forecasts, but state-of-the-art ag-
gregation algorithms, such as the “extremized mean,” con-
sistently outperform simple averaging in practice (Atanasov
et al. 2016) and can take advantage of truthful reports.

2 Model
We consider a group of n ≥ 2 forecasters, indexed by
i ∈ [n] = {1, . . . , n}, and m independent events, indexed
by k ∈ [m] = {1, . . . ,m}. We model these as m indepen-
dent random variables Xk that take values in {0, 1}, and we
say that “event k occurred” if Xk = 1 and that “event k did
not occur” if Xk = 0. In each of these cases, we say that
“event k materialized,” and we denote the vector of all ma-
terialized outcomes with x =

(
x1, . . . , xk, . . . , xm

)
. The

true, unknown probability that event k occurs is θk with
θk ∈ (0, 1) for all k ∈ [m]. Every forecaster i has a sub-
jective belief pi,k of the probability that event k will oc-
cur with pi,k ∈ (0, 1) for all i ∈ [n] and all k ∈ [m].
Throughout the paper we assume that it is common knowl-
edge that the m events are independent. (We discuss the
problems that arise when events can be correlated in Sec-
tion 6.5.) All forecasters report their beliefs about event k at
the same time, before event k materializes. When reporting
on event k, we allow forecasters to know the outcomes of all
past events. The reported forecast of forecaster i for event
k is denoted by yi,k ∈ [0, 1]. A forecaster’s report can be
equal to her true belief (i.e., yi,k = pi,k) but does not have
to be, and we denote the vector of i’s reported forecasts as
yi =

(
yi,1, . . . , yi,k, . . . , yi,m

)
.

Once all m events have materialized, the mechanism se-
lects one of the n forecasters as the “winner.” The selection

is based on the event outcomes and all forecasters’ reports
on all events. We allow this selection to be randomized.
Definition 1. A forecaster selection mechanism M :
y1, . . . ,yn,x → [n] takes all forecasters’ reports on all
events and the materialized outcomes of all events, and out-
puts a single forecaster.

In contrast to standard proper scoring rules, forecasters
only care about being selected. Every forecaster thus seeks
to maximize the probability of being selected. Incorporating
forecaster i’s subjective beliefs over event outcomes and the
mechanism’s randomization (if any), we obtain the follow-
ing definition for strict truthfulness of a mechanism.
Definition 2. Forecaster selection mechanism
M(y1, . . . ,yn,x) is strictly truthful if and only if
for all i ∈ [n], all pi, all y′

i 6= pi, and all yj
for j 6= i, Pr

x∼pi

(
M(y1, . . . ,pi, . . . ,yn,x) = i

)
>

Pr
x∼pi

(
M(y1, . . . ,y

′
i, . . . ,yn,x) = i

)
.

Observe that we do not require the typical assumption that
forecasters are risk neutral: every forecaster strictly prefers
being selected over not being selected, so that the higher the
probability of being selected, the better. This idea is not new;
previous work used lotteries to address unknown risk prefer-
ences of forecasters (Karni 2009; Lambert 2011). While we
also reward forecasters probabilistically (and obtain robust-
ness to unknown risk preferences as a bonus), the primary
reason we use lotteries is because we have many forecasters
but only a single prize to award. To the best of our knowl-
edge, we are the first to study this competitive lottery setting
in the context of forecasting.

We compare forecasters by their accuracy, which is de-
fined as 1 minus the squared distance between their reports
and the true (unknown) probabilities, averaged over all m
events. The accuracy ai of forecaster i is thus

ai = 1− 1

m

m∑
k=1

(
yi,k − θk

)2
with higher ai being better. Observe that ai ∈ (0, 1] for all
i ∈ [n]. Of course, other definitions of accuracy are think-
able, but squared loss is commonly used in practice. We will
see in Section 3 how the definition of accuracy dictates the
choice of which proper scoring rule to use.

The objective in this work is to select the forecaster with
the highest accuracy with as high a probability as possible,
and ideally with probability approaching 1 as m grows. Of
course, one could imagine other objectives, such as maxi-
mizing the expected accuracy of the selected forecaster or
minimizing the accuracy gap between the selected and the
best forecaster. We briefly discuss alternatives in Section 6.

3 Forecaster Selection Using Standard
Proper Scoring Rules

Consider a single forecaster and a single event. A scoring
rule computes a payment that depends on the event outcome
x and the forecaster’s report y regarding the probability that
x = 1, paying the forecaster some amount R(y, x).



Definition 3 (Strictly Proper Scoring Rule). A scoring rule
R(y, x) ∈ R ∪ {−∞} is a mapping from reports y ∈
[0, 1] and outcomes x ∈ {0, 1} to scores. A scoring rule
R is proper if for all p, y ∈ [0, 1], Ex∼p

[
R(p, x)

]
≥

Ex∼p
[
R(y, x)

]
, and strictly proper if the inequality is strict

whenever y 6= p.

There exist infinitely many proper scoring rules since any
(strictly) convex function corresponds to a (strictly) proper
scoring rule (Gneiting and Raftery 2007, Theorem 1). In this
paper, we focus on the quadratic scoring rule (Brier 1950),
the most widely used scoring rule both in the literature (e.g.,
in Lichtendahl et al. (2013)) and in practice (e.g., in the
Good Judgment Project and ProbabilitySports).

Proposition 1. (Brier 1950) The quadratic scoring rule
Rq(y, x) = 1− (y − x)2 is strictly proper.

Observe that Definition 3 is phrased in an incentive spirit,
where the expectation is taken with respect to a forecaster’s
subjective belief p. Proper scoring rules also have an accu-
racy interpretation. If the expectation is taken with respect to
the true probability θ of the event occurring, then properness
implies that reporting the true probability obtains a higher
expected score than any other report. Less accurate reports
lead to lower expected scores. Different proper scoring rules
interact particularly nicely with different notions of accu-
racy. As shown in the second statement of Proposition 2, the
quadratic score has a nice connection with our definition of
accuracy. Specifically, the expected difference in quadratic
score between two forecasters is equal to the difference be-
tween their accuracies. Alternative definitions of accuracy
would suggest the use of alternative scoring rules.

Proposition 2. The quadratic scoring rule has expected
score Ex∼θ

[
Rq(y, x)

]
= θ2 − θ + 1 − (θ − y)2. Further,

Ex∼θ

[∑m
k=1

(
Rq(yi,k, xk)−Rq(yj,k, xk)

)]
=m(ai−aj).

Proof. The first statement is easily derived by expanding out
and rearranging the terms in

E
x∼θ

[
Rq(y, x)

]
= θ
(
1− (y− 1)2

)
+ (1− θ)

(
1− (y− 0)2

)
.

For the second statement,

E
x∼θ

[
m∑
k=1

(
Rq(yi,k, xk)−Rq(yj,k, xk)

)]

=

m∑
k=1

((
θ2k − θk + 1− (θk − yi,k)2

)
−
(
θ2k − θk + 1− (θk − yj,k)2

))
=

(
m−

m∑
k=1

(
yi,k − θk

)2)−(m− m∑
k=1

(
yj,k − θk

)2)
=m(ai − aj).

3.1 Mechanism
A natural way to extend a proper scoring rule R to a fore-
caster selection mechanism is to output the forecaster with
highest score according to R, summed across all m events.
This mechanism is commonly used in practice to choose
top forecasters, including by the Good Judgment Project and
ProbabilitySports. Let Mq denote the mechanism derived in
this way from the quadratic score. That is, Mq selects the
forecasters with highest quadratic score,

Mq(y1, . . . ,yn,x) ∈ argmax
i∈[n]

m∑
k=1

Rq(yi,k, xk),

with ties broken uniformly at random. In the remainder of
this section, we illustrate that, despite its common use, Mq

may select an arbitrarily bad forecaster, while not incentiviz-
ing forecasters to report their beliefs truthfully.

3.2 Incentives
It is well known that selecting a forecaster according to high-
est quadratic score may produce perverse incentives. In gen-
eral, forecasters are incentivized to make over-confident re-
ports to increase their chance of being judged the best fore-
caster ex post for at least some outcomes. In this section
we present a representative example; for a thorough analy-
sis of the strategic behavior of competitive forecasters when
ranked by standard proper scoring rules, we defer to Licht-
endahl and Winkler (2007).
Example 1. Consider m ≥ 1, n ≥ 2, and pi,k = 0.9 for all
forecasters i and events k. If all forecasters report truthfully,
then they achieve the same quadratic score regardless of the
outcome. Each is therefore chosen as the winner with prob-
ability 1/n. Suppose however that forecaster 1 misreports
y1,1 = 0.95. Then, forecaster 1 has the highest quadratic
score whenever x1 = 1, which occurs with probability 0.9,
so this is an advantageous misreport.

3.3 Accuracy
We now show that Mq may fail to choose even a perfect
forecaster with any positive probability.
Proposition 3. For arbitrary m ≥ 1, n ≥ 3, and true
event probabilities θ1, . . . , θm ∈ (0, 1), there exist reports
y1, . . . ,yn such that the best forecaster has accuracy 1 but
is selected with probability 0 by Mq .

Proof. Let forecaster 1 report perfectly on all events, (i.e.,
y1,k = θk for all k ∈ [m]). For the first event, let there be at
least one other forecaster with more weight on each possible
outcome. For example, let forecaster 2 report y2,1 = 1 and
forecaster 3 report y3,1 = 0. For all following events, let all
n forecasters report perfectly (i.e., yi,k = θk for all i and all
k ≥ 2). Then, for any outcome vector x, either forecaster 2
or forecaster 3 will have a higher quadratic score than fore-
caster 1, despite forecaster 1 having accuracy 1.

Note that the example used in the proof of Proposition 3
shows that the best forecaster may be selected with low
probability, but does not say anything about the quality of
the selected forecaster. Indeed, for large m, all forecasters



have very similar quality, so the selected forecaster will be
close to best in this particular example.

4 Truthful Forecaster Selection
with a Single Event

In this section and the next, we present a forecaster selec-
tion mechanism that avoids the shortcomings of Mq . To
build intuition, we begin by considering a single-event set-
ting (m = 1). In Section 5, we show how to extend our
mechanism to handle multiple events.

What needs to hold in order for a forecaster selection
mechanism to be truthful? First note that truthfulness re-
quires that, holding the reports of everyone but forecaster
i fixed, the probability fi of choosing forecaster i must be-
have like a proper scoring rule for i. If this is not the case,
then i could increase her probability of being selected by
misreporting. Thus we need proper scoring rules for each
forecaster that are non-negative and always sum to 1 to form
a valid probability distribution. A natural first attempt to
achieve this would be to use a standard scoring rule, like
the quadratic score, and renormalize by dividing by the sum
of all forecasters’ scores. However, as Example 2 shows, this
renormalized scheme is not truthful.
Example 2. Let n = 2, and suppose p1 = p2 = 0.9. If
both forecasters report truthfully, each is chosen with prob-
ability 0.5, regardless of the outcome. However, suppose that
forecaster 1 reports y1 = 0.8. Now, if x = 1, the probability
that she is chosen isRq(0.8, 1)/

(
Rq(0.8, 1)+Rq(0.9, 1)

)
=

0.96/1.95, and if x = 0, the probability that she is chosen is
Rq(0.8, 0)/

(
Rq(0.8, 0) + Rq(0.9, 0)

)
= 0.36/0.55. Thus,

her probability of being chosen is 0.9 · 0.96/1.95 + 0.1 ·
0.36/0.55 ≈ 0.509 > 0.5, which means that y1 = 0.8 is an
advantageous misreport.

The reason that such a renormalization of proper scores
breaks truthfulness is that the probability of choosing fore-
caster i depends multiplicatively on a function of other fore-
casters’ reports and, crucially, the outcome x. To get around
this, we borrow a trick from the competitive scoring rule
mechanism of Kilgour and Gerchak (2004), which takes
advantage of the fact that truthfulness is preserved when
adding or subtracting a function of other reports and the out-
come. Using their mechanism, each forecaster’s payment is
a standard proper score (such as quadratic) minus the av-
erage standard score of all other forecasters. Our Event-
Lotteries Forecaster Selection Mechanism (ELF) uses a sim-
ilar idea to “normalize” all forecasters’ scores additively, so
that they are non-negative and sum up to 1. ELF then runs
a lottery based on these scores to determine the winner of
the prize. Alternatively, one can think of ELF as giving each
forecaster a 1/n probability to start with and adjusting this up
or down depending on how their performance compares with
that of other forecasters. As we will see, ELF is strictly truth-
ful and selects high-accuracy forecasters with higher proba-
bility than low-accuracy forecasters.

4.1 Mechanism
For a single event, the Event-Lotteries Forecaster Selection
Mechanism (ELF) Ml(y1, . . . , yn, x) selects forecaster i ∈

[n] with probability

fi =
1

n
+

1

n

(
Rq
(
yi, x

)
− 1

n− 1

∑
j 6=i

Rq
(
yj , x

))
.

It is easy to see that
(
f1, . . . , fn

)
is a valid probability dis-

tribution. That each fi is non-negative follows immediately
from Rq being bounded in [0, 1]. And

∑n
i=1 fi = 1 since

n∑
i=1

(
Rq
(
yi, x

)
− 1

n− 1

∑
j 6=i

Rq
(
yj , x

))
= 0.

4.2 Incentives
Using a similar argument to that of Kilgour and Ger-
chak (2004), we can show that ELF is truthful.

Theorem 4. ELF is strictly truthful for a single event.

Proof. Note that the only term in fi that depends on yi
is (1/n)Rq(yi, x). By linearity of expectation, maximizing
Ex∼pi [fi] is therefore equivalent to maximizing Rq(yi, x),
and truthfulness follows from the fact that Rq is a strictly
proper scoring rule.

4.3 Accuracy
We now show that ELF chooses forecasters with higher ac-
curacy more often than those with lower accuracy.

Proposition 5. The probability that ELF chooses forecaster
i given true probability θ is 1

n + 1
n

(
ai − 1

n−1
∑
j 6=i aj

)
.

Proof. Using the second half of Proposition 2,

Pr
x∼θ

(
Ml

(
y1, . . . , yn, x

)
= i
)
= E
x∼θ

[
fi
]

= E
x∼θ

[
1

n
+

1

n
· 1

n− 1

∑
j 6=i

(
Rq
(
yi, x

)
−Rq

(
yj , x

))]

= E
x∼θ

[
1

n
+

1

n
· 1

n− 1

∑
j 6=i

(
ai − aj

)]

=
1

n
+

1

n

(
ai −

1

n− 1

∑
j 6=i

aj

)
.

5 Truthful Forecaster Selection
with Multiple Events

In this section, we show how to generalize our single-event
selection mechanism to handle multiple independent events.
One seemingly natural generalization would be to run ELF
on each of them events independently, and then choose each
forecaster i with probability

∑m
k=1 fi,k/m, where fi,k =

Pr
(
Ml(y1,k, . . . , yn,k, xk) = i

)
. Unfortunately, doing this

would not satisfy one of our key desiderata: that our mech-
anism chooses the most accurate forecaster with probability
tending to 1 as the number of events grows. This failure is
illustrated by Example 3.



Example 3. Let n = 2, and suppose that there are m
events, with θk = 0.5 for all k ∈ [m]. Suppose that fore-
caster 1 reports y1,k = 0.5 for all k, while forecaster 2
reports y2,k = 1 for all k. As m grows large, approxi-
mately half the events will have outcome xk = 0, so that
f1,k = 1

2 + 1
2 (0.75 − 0) = 0.875 and f2,k = 1

2 + 1
2 (0 −

0.75) = 0.125. The other half of the events will have out-
come xk = 1, so that f1,k = 1

2 + 1
2 (0.75− 1) = 0.375 and

f2,k = 1
2 +

1
2 (1−0.75) = 0.625. Therefore, after all m out-

comes are observed, forecaster 1 is chosen with probability
(0.875+ 0.375)/2 = 0.625, and forecaster 2 is chosen with
probability (0.125+0.625)/2 = 0.375. Despite the fact that
forecaster 1 is a much better forecaster, we still choose fore-
caster 2 with 37.5% probability, even with a large number
of events.

In the following, we propose and analyze an alternative
generalization that is guaranteed to select the best forecaster
with probability tending to 1 as the number of events grows.
It does this by running an independent lottery on each round
and selecting the forecaster who wins the most lotteries.
Having independent lotteries retains truthfulness while pick-
ing up on forecasters’ accuracy differences better than a sin-
gle lottery, for the same underlying reason that statistical
concentration inequalities hold (e. g., Hoeffding 1963).

5.1 Mechanism
For multiple events, the Event-Lotteries Forecaster Selection
Mechanism (ELF) Ml(y1, . . . ,yn,x) is defined as:

1. For each event k, pick forecaster i to be the event winner
wk with probability

fi,k =
1

n
+

1

n

(
Rq
(
yi,k, xk

)
− 1

n− 1

∑
j 6=i

Rq
(
yj,k, xk

))
.

2. Select the forecaster who won the most events,
argmaxi

∑m
k=1 1(wk = i), breaking ties uniformly at

random. Here 1 denotes the 0/1 indicator function.

5.2 Incentives
We now show that ELF remains truthful with multiple
events. This proof relies heavily on our assumption that the
independence of them events is common knowledge. In par-
ticular, if a forecaster believes that events are correlated, she
could have an incentive to misreport.
Theorem 6. ELF is strictly truthful for m ≥ 1 events.

Proof. Without loss of generality, order the events by the
time at which the forecasters report on them. So event 1 is
reported on first, and event m is reported on last.

Fix all forecasters’ reports y1, . . . ,yn. Consider fore-
caster i and suppose that i’s report on at least one event does
not equal her true belief. Of all such events, let k′ be the one
with lowest index. That is, yi,k′ 6= pi,k′ , and yi,k = pi,k for
all events k < k′. We will argue that i can improve her prob-
ability of being selected as the best forecaster by instead re-
porting yi,k′ = pi,k′ . The intuition is that doing so increases
i’s probability of winning event k′, by truthfulness on a sin-
gle event, while not affecting her probability of winning any

other event. This shows truthfulness, since we can repeat the
argument as long as there remains an event on which i does
not report truthfully.

Formally, consider the m − 1 events other than k′. Since
we have assumed that the outcomes for these events are in-
dependent of the outcome of event k′, we can reason about
them independently. There are three possible cases that we
distinguish, depending on the winners of these events:

1. There exists some forecaster j 6= i that wins at least two
more events than forecaster i, or i wins at least two more
events than all other forecasters.

2. There exists some forecaster j 6= i that wins exactly one
more event than forecaster i, but no forecaster that wins
two or more events more than i.

3. No forecaster wins more events than i, but there exists
some forecaster j 6= i that wins either the same number
of events as i, or one event less than i.

In Case 1, i’s probability of being selected is either 0 or
1, regardless of who wins event k′. Therefore, her utility is
unaffected by her report yi,k′ .

In Case 2, forecaster i wants to maximize fi,k, since win-
ning event k is the only scenario in which she gets selected
with any non-zero probability. By strict truthfulness of ELF
for a single event (Theorem 4), she accomplishes this only
by truthfully reporting yi,k′ = pi,k′ .

In Case 3, forecaster i has two (potentially conflicting) ob-
jectives: to maximize fi,k, and to minimize fj,k for all fore-
casters j from some subset of the other forecasters. How-
ever, it is easy to check that these objectives are not actually
in conflict; truthfully reporting yi,k′ = pi,k′ simultaneously
uniquely maximizes fi,k, and uniquely minimizes fj,k, for
any j 6= i.

Since the three cases are exhaustive, and i is weakly in-
centivized to report truthfully in all of them, we have already
shown that ELF is weakly truthful. To complete the argu-
ment that i is strictly incentivized to report yi,k′ = pi,k′ , we
argue that i believes that at least one of Cases 2 and 3 occurs
with positive probability (in fact, she will believe that both
occur with positive probability but one is sufficient). To see
this, note that for all events k that have already materialized
at the time the forecasters report on event k′ it holds that

fj,k > 0 ∀j ∈ [n], (1)

and for all events k that have not yet materialized at the time
the forecasters report on event k′ it holds that

E
xk∼pi,k

[
fj,k > 0

]
∀j ∈ [n]. (2)

Equation 1 holds because if k has materialized before the
forecasters report on k′, then the forecasters reported on k
before they reported on k′ (i.e., k < k′). Therefore, by min-
imality of k′, yi,k = pi,k ∈ (0, 1). From this, it can easily be
verified that fj,k > 0 for all j, regardless of the outcome xk.
To verify Equation 2, note that pi,k ∈ (0, 1), which means
that i has strict uncertainty about outcome xk. This implies
that Exk∼pi,k

[
Rq(yj,k, xk) > 0

]
for any yj,k ∈ [0, 1], and it

is easy to check that any forecaster j with non-zero quadratic



score for event k has fj,k > 0. Therefore, since (the ex-
pected value of) fj,k > 0 for all forecasters j ∈ [n] and all
events k 6= k′, it is possible that all forecasters win the same
number of events (up to one, due to indivisibility of events)
from these m− 1 events, which corresponds to Case 3.

Thus, i improves her probability of being selected by re-
porting yi,k = pi,k, and ELF is strictly truthful.

5.3 Accuracy
Finally, we bound the probability that ELF chooses the most
accurate forecaster. The proof uses Hoeffding’s inequality
(Hoeffding 1963), which we state here for convenience.

Theorem 7 (Hoeffding’s inequality). Let X1, . . . , Xm be
independent random variables bounded by the interval
[0, 1]. Define Sm = X1 + . . .+Xm. Then

Pr
(∣∣Sm −E

[
Sm
]∣∣ ≥ t) ≤ 2e−

2t2

m .

Theorem 8. Suppose that ai ≥ aj + ε for all j 6= i. Then
the probability that ELF chooses forecaster i is

Pr
x∼θ

(
Ml

(
y1, . . . ,yn,x

)
= i
)
≥ 1− 4(n− 1)e

− mε2

2(n−1)2 .

That is, for fixed n and ‘accuracy gap’ ε, for any δ > 0, ELF
chooses the best forecaster with probability at least 1− δ if

m ≥ 2(n− 1)2

ε2
ln

(
4(n− 1)

δ

)
.

Proof. We first bound the difference between the expected
number of events won by i and the expected number of
events won by some other forecaster j 6= i:

E
x∼θ

[
m∑
k=1

fi,k

]
− E
x∼θ

[
m∑
k=1

fj,k

]
= E
x∼θ

[
m∑
k=1

(
fi,k−fj,k

)]

=
Ex∼θ

[∑m
k=1

(
Rq(yi,k, xk)−Rq(yj,k, xk)

)]
n− 1

≥ mε

n− 1
.

The second equality follows from substituting the defini-
tion of fi,k and simplifying, and the inequality follows from
the second part of Proposition 2 and the assumed difference
in accuracy between i and all other forecasters.

We now upper bound the probability that forecaster j wins
more events than forecaster i. Let Fi be a random variable
for the number of events won by forecaster i, so that E[Fi] =

E
[∑m

k=1 fi,k
]
, where the latter expectation is taken over the

outcomes, and the former is taken over the outcomes and the
randomness of the lotteries. Likewise, let Fj be the number
of events won by forecaster j. From the equation above, if
Fj ≥ Fi, then it holds that either E[Fi] − Fi ≥ mε

2(n−1) or
Fj −E[Fj ] ≥ mε

2(n−1) . By Hoeffding’s inequality,

Pr

(∣∣∣Fi −E
[
Fi
]∣∣∣ ≥ mε

2(n− 1)

)
≤ 2e

− mε2

2(n−1)2 ,

with the analogous inequality holding for Fj . Putting these
together, we have

Pr(Fj ≥ Fi)

≤Pr

((
E
[
Fi
]
−Fi≥

mε

2(n−1)

)
∪
(
Fj−E

[
Fj
]
≥ mε

2(n−1)

))

≤Pr

(
E
[
Fi
]
−Fi≥

mε

2(n−1)

)
+Pr

(
Fj−E

[
Fj
]
≥ mε

2(n−1)

)
≤ 4e

− mε2

2(n−1)2 .

Finally, we lower bound the probability that ELF selects
forecaster i.

Pr
x∼θ

(
Ml

(
y1, . . . ,yn,x

)
= i
)

=1−
∑
j 6=i

Pr
x∼θ

(
Ml

(
y1, . . . ,yn,x

)
= j
)

≥1−
∑
j 6=i

Pr
x∼θ

(
Fj ≥ Fi

)
≥1− 4(n− 1)e

− mε2

2(n−1)2 ,

where the first transition holds because exactly one fore-
caster is selected and the second because Fj ≥ Fi is a neces-
sary condition for forecaster j to be selected by ELF. The fi-
nal transition holds by plugging in the earlier inequality.

6 Discussion
In this section, we discuss connections between our work
and related research areas, describe extensions to our model,
and discuss the open problem of handling correlations.

6.1 Correspondence with Wagering Mechanisms
As discussed in Section 4, ELF is very closely related to
Kilgour and Gerchak’s competitive scoring rule. Competi-
tive scoring rules are a special case of wagering mechanisms
(Lambert et al. 2008; Chen et al. 2014), in which each fore-
caster reports both a probability pi of an event occurring
and a monetary wager wi ∈ R+. Once the event has ma-
terialized, wagers are redistributed to the forecasters in such
a way that the redistributed amounts depend on each fore-
caster’s relative performance. A competitive scoring rule is
simply a wagering mechanism in which all forecasters are
required to wager the same amount.

There is a one-to-one correspondence between (truth-
ful) budget-balanced competitive scoring rules and (truthful)
single-event forecaster selection mechanisms. In particular,
we can view a forecaster selection mechanism as a mecha-
nism in which each forecaster starts out with an initial proba-
bility and “wagers” this probability against other forecasters.
These initial probabilities are then redistributed among the
n forecasters according to their relative performance. Using
this interpretation, this paper provides a general framework
for constructing forecaster selection mechanisms: first, fix
a particular competitive scoring rule (or wagering mecha-
nism) and define the corresponding single-event forecaster



selection mechanism. Second, extend to multiple events by
picking a winner for each event and selecting the forecaster
who won the most events.

Because of this strong correspondence, existing work on
wagering mechanisms is informative about limitations for
the design of forecaster selection mechanisms. A general
problem with wagering mechanisms is that of low stakes:
even for fairly different reports, forecasters generally stand
to lose only a small fraction of their wager, regardless of the
outcome. When a low-stakes wagering mechanism is used
as a building block for a forecaster selection mechanism,
this means that even a bad forecaster will be chosen with
relatively high probability. Lambert et al. (2008) show that,
under fairly mild assumptions on the behavior of the wager-
ing mechanism (all of which are satisfied by the Kilgour-
Gerchak competitive scoring rules), it is impossible for any
forecaster to more than double her wager. In our forecaster
selection setting, this directly implies that no forecaster wins
an event with probability higher than 2/n, even if she reports
perfectly and all other forecasters have the worst-possible
reports. In practice, this means that any forecaster selec-
tion mechanism built on a wagering mechanism that satis-
fies the assumptions of Lambert et al. (including ELF) will
only slowly converge to selecting the best forecaster with
probability 1 as the number of events grows.

To circumvent this, some assumptions would need to be
relaxed. One promising direction is to drop the requirement
of strict budget balance, meaning that the mechanism must
pay out exactly what it takes in, and instead require weak
budget balance, which allows the mechanism to profit. For
forecaster selection, this would mean that probabilities could
sum to less than one, which one can interpret as allow-
ing the possibility of abstaining from choosing a forecaster
(with some appropriate, application-dependent, penalty for
abstaining). Using a wagering mechanism that gives up strict
budget balance for higher stakes, such as the Double Clinch-
ing Auction of Freeman, Pennock, and Vaughan (2017), may
produce faster convergence in practice.

6.2 Forecaster Hiring
Forecasting competitions are often used as a method of
choosing a forecaster to hire when future predictions are
needed. In this setting, the goal of the selection mecha-
nism is to choose the forecaster who will be (approximately)
the most accurate on future events. There is an implicit
assumption here that good performance on the observed
events translates into good performance in the future, a well-
established fact in practice (e. g., Mellers et al. 2014).

Our methods and results can be extended to this setting.
Instead of defining accuracy as a function of the m events
being predicted, we could instead assume a joint distribu-
tion D over event probabilities θ and the beliefs pi of each
forecaster i. We could then define the accuracy of forecaster
i in terms of the expected quadratic score of her forecasts
with respect to D.

Under this model, mechanism Mq discussed in Section 3
can be viewed as performing an analog of empirical risk
minimization. Similar to how basic empirical risk minimiza-
tion bounds are proved for PAC learning (Kearns and Vazi-

rani 1994), we could then argue that, with high probabil-
ity, the forecaster with the highest accuracy on any observed
sample of events has expected accuracy close to that of the
best forecaster in the set. Therefore, as the number of events
grows large, the forecaster selected byMq would be guaran-
teed to have accuracy arbitrarily close to that of the most ac-
curate forecaster. However, the incentive issues remain. The
advantage of ELF is that it obtains truthful reports for any
m while achieving similar accuracy guarantees as m grows
large. In this sense, ELF can be viewed as a mechanism for
learning in the presence of strategic agents.

6.3 Beyond Binary Outcomes

So far, we have restricted our analysis to events with binary
outcomes. In practice, we are also interested in events with
non-binary (categorical) outcomes, to which the definition
of forecaster accuracy can be naturally extended. Unsurpris-
ingly, selecting the forecaster with highest quadratic score
(using the generalization introduced by Brier, 1950) inherits
all the problems exhibited in Section 3.

ELF readily extends to categorical outcomes. The com-
petitive scoring rule of Kilgour and Gerchak (2004) is truth-
ful for categorical outcomes when the generalized quadratic
scoring rule is used, and ELF inherits this truthfulness for a
single event. With multiple events, truthfulness follows from
the same arguments used in the proof of Theorem 6. More-
over, in terms of accuracy, it still holds that more accurate
forecasters obtain higher quadratic scores in expectation, so
the most accurate forecaster still wins the most events in ex-
pectation. Hence, by a qualitatively identical argument as
the one in Theorem 8, we can lower bound the probability
of selecting the most accurate forecaster with a bound that
approaches 1 as the number of events grows.

A similar extension would allow us to truthfully elicit
a sequence of expectations of bounded continuous random
variables and select the highest accuracy forecaster.

6.4 Outputting a Forecaster Ranking

In some practical applications, it may be more appropriate to
output a ranking rather than a single forecaster. For example,
most play-money prediction markets maintain a ranking of
contestants. Ranking forecasters in order of quadratic score
again inherits all of the problems described in Section 3.

ELF can be adapted to produce a ranking by simply order-
ing forecasters according to the number of events that they
win. As long as forecasters strictly prefer higher positions
in the ranking, ELF remains truthful, since forecasters max-
imize their probability of winning an event (and potentially
moving up in the ranking) by reporting truthfully.

Moreover, the same style of accuracy results from Sec-
tion 5.3 hold, at least qualitatively, when the objective is
to maximize the probability of outputting the correct rank-
ing. In expectation, more accurate forecasters achieve higher
quadratic scores, leading to higher expected values of fi,k.
Thus, more accurate forecasters win more events in the long
run, and the true ranking is faithfully revealed.



6.5 Correlated Events
When m > 1, a forecaster who believes that two or more
events are correlated may have an incentive to misreport un-
der ELF, as illustrated in the following example.

Example 4. Let n = 2 and let m be large. Suppose
that all events are perfectly correlated (so that either all
xk = 1 or all xk = 0), with θ1 = . . . = θm = 0.8. If
y1 = y2 = (0.8, . . . , 0.8), then ELF chooses each fore-
caster with probability 0.5. Suppose instead that forecaster
1 reports y1 = (1, . . . , 1). If xk = 1 for all k, then for
each k, Pr(wk = 1) = 0.5 + 0.5(1 − 0.96) = 0.52. If m
is sufficiently large and forecaster 1 has probability 0.52 of
winning each event, she is selected by ELF over forecaster
2 with probability close to 1. This happens with probability
0.8, so forecaster 1 is selected with probability close to 0.8,
much higher than if she had reported truthfully.

For similar reasons, ELF may fail to identify the best fore-
caster with high probability if events are correlated.

It is an open question whether the performance of ELF (in
terms of both truthfulness and accuracy) degrades gracefully
under mild correlations. As one piece of evidence suggest-
ing that it might, if a particular event is not correlated with
any others, a forecaster has incentive to report truthfully for
that event. It would also be interesting to investigate whether
forecaster selection mechanisms can be designed to be (the-
oretically or empirically) robust to some level of correlation,
perhaps by allowing more expressive reports.

7 Conclusion
We examined a setting in which forecasters compete for a
single prize, and have shown that choosing the forecaster
with highest score according to a standard proper scoring
rule can lead to selecting a sub-optimal forecaster with high
probability, as well as creating incentives for forecasters to
lie about their beliefs. To overcome these drawbacks, we de-
signed the Event-Lotteries Forecaster Selection Mechanism
(ELF). ELF both incentivizes truthful reporting and yields
provable guarantees on the probability that the most accu-
rate forecaster is selected. As the number of events predicted
grows large, the probability that ELF selects the best fore-
caster approaches 1. Beyond the future research directions
outlined in Section 6, another important next step will be to
evaluate ELF experimentally against other truthful and non-
truthful mechanisms.
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