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Abstract

We study a dynamic social choice problem in which
an alternative is chosen at each round according to
the reported valuations of a set of agents. In the in-
terests of obtaining a solution that is both efficient
and fair, we aim to maximize the long-term Nash
welfare, which is the product of all agents’ utili-
ties. We present and analyze two greedy algorithms
for this problem, including the classic Proportional
Fair (PF) algorithm. We analyze several versions of
the algorithms and how they relate, and provide an
axiomatization of PF. Finally, we evaluate the algo-
rithms on data gathered from a computer systems
application.

1 Introduction
Fairness is a topic of rapidly increasing interest in social
choice. On the one hand, there has been much recent in-
terest in the fair allocation of resources—cake cutting [Pro-
caccia, 2013] as well as other models [Ghodsi et al., 2011;
Parkes et al., 2012]. On the other hand, in voting, fairness
considerations have received attention in selecting a com-
mittee, in the form of a focus on the voters being repre-
sented in the committee [Chamberlin and Courant, 1983;
Monroe, 1995; Brams et al., 2007; Aziz et al., 2017].

A classical approach to obtaining a fair outcome in a
context where agents have utility functions is to maximize
the Nash welfare [Nash, 1950], which is the product of the
agents’ utilities. One attractive feature of using the maximum
Nash welfare (MNW) solution is scale invariance: if an agent
doubles all her utilities (or, equivalently, changes the units in
which she expresses her utilities), this does not change which
outcomes maximize the objective (the solution is not however
stable under additive transformations, where an agent simply
adds some constant value to all her reported utilities).

In life, it is often difficult to make a completely fair deci-
sion in a single-shot context; often, every option will leave
some agents unhappy. Fortunately, we can often address
this over time—we will go to my most preferred restau-
rant today, and to yours next week. Achieving fairness over
time is the topic of our paper. Ours is certainly not the
first work to consider fairness or social choice in dynamic

settings [Parkes and Procaccia, 2013; Kash et al., 2014;
Aleksandrov et al., 2015].

When we make multiple decisions over time, we could
simply maximize the Nash welfare in each round separately.
But it is easy to see that this can lead to dominated out-
comes. For example, suppose there are two agents, and we
can choose an alternative that gives one a reward of 3, and
the other a reward of 0; or vice versa; or an alternative that
gives each of them 1. Within a round, the last alternative
maximizes Nash welfare; but if this scenario is repeated ev-
ery round, then it would be better to alternate between the
first two alternatives, so that each agent obtains 1.5 per round
on average. Of course, initially, say in the first round, we
may not realize we will have these options every round, and
so we may choose the last alternative; but if we do have these
options every round, we should eventually catch on to this
pattern and start alternating. Ideally, we would maximize the
long-term Nash welfare, that is, the product of the long-run
utilities (which are the sums of each agent’s rewards), rather
than, for example, the sum of the products within the rounds.

In this work, we do not focus primarily on strategic con-
cerns. Of course it is fairly common to ignore strategic con-
cerns in the social choice literature, but we do think this is
an important topic for future work. On the other hand, there
are also important contexts where strategic concerns do not
come into play. For example, instead of considering a set-
ting where there are multiple agents that have different utility
functions, we can consider a setting where there are multiple
objectives that each alternative contributes towards. For ex-
ample, consider faculty hiring. Suppose the three objectives
that we want our faculty hires to contribute to are research,
teaching, and service; moreover, suppose that at the time of
hiring we can predict well how much each candidate would
contribute to each of these objectives, if hired. Then, it stands
to reason that, one year, we may hire a top researcher that we
do not expect to contribute much to the other objectives. But
we would be loath to make such a decision every year; having
hired a few top researchers who are not good at teaching or
service, pressure will mount to address these needs. This fits
well into our framework, if we simply treat each of the three
objectives as an agent that is “happy” with an alternative to
the extent to which it addresses the corresponding objective.

The rest of the paper is organized as follows. In Section 2
we introduce notation and preliminaries. In Section 3 we



present two simple greedy algorithms for choosing alterna-
tives, and provide intuitive interpretations of them, including
an axiomatic justification for one of them. After presenting
the algorithms, we evaluate them on data from a computer
systems application in Section 4.

Justification for Nash welfare: The Nash welfare is fre-
quently used as an objective in the fair division literature as
it strikes a balance between maximizing efficiency and fair-
ness [Cole and Gkatzelis, 2015; Darmann and Schauer, 2015;
Ramezani and Endriss, 2010]. Caragiannis et al. [2016] have
recently shown the MNW solution to satisfy envy freeness
up to one good, as well as approximating the maximin share
guarantee. However, work in fair division focuses primar-
ily on the allocation of private goods, where each alterna-
tive gives utility to exactly one agent. This is not the case in
our setting, where each alternative can be valued positively
by many agents. Conitzer et al. [2017] explicitly consider
fairness axioms in the public good setting, including propor-
tionality, which states that each agent should derive at least
a 1
n fraction of the utility she could obtain by choosing the

outcome at each round. It turns out that a proportional so-
lution may not exist in our setting, but the MNW solution
always satisfies a weaker criterion: For each agent i, there
exists a round such that if i is given control of that round,
then i achieves their utility guaranteed by proportionality.

We can also appeal to Nash’s original axiomatization of the
MNW solution [Nash, 1950] as the only solution that satisfies
scale-freeness, Pareto optimality, independence of irrelevant
alternatives, and symmetry, which are all natural in our set-
ting (although without an explicit focus on fairness).

Related work: Parkes and Procaccia [2013] examine a
similar problem by modeling agents’ evolving preferences
with Markov Decision Processes, with a reward function de-
fined over states and actions (alternatives). However, their
goal is to maximize the sum of (discounted) rewards and they
do not explicitly consider fairness as an objective. Kash et
al. [2014] examine a model of dynamic fair division where
agents arrive at different times and must be allocated re-
sources; however, they do not allow for the preferences of
agents to change over time as we do. Aleksandrov et al.
[2015] consider an online fair division problem in a setting
where items appear one at a time, and agents declare yes/no
preferences over that item. In our setting, each round has
many alternatives and agents express more general utilities.
Our work is related to the literature on dynamic mechanism
design (Parkes et al. [2010] provide an overview), except that
we do not consider monetary transfers. Guo et al. [2009] con-
sider a setting similar to ours, also without money, except that
they are not explicitly interested in fairness, only welfare, and
focus on incentive compatibility.

2 Preliminaries
Consider a set of n agents and let A = {a1, . . . , am} be a set
of m possible alternatives.1 At every round t = 1, . . . , T ,
every agent i reports her valuation vti(aj) ∈ N for every

1For simplicity of presentation, we define the set of alternatives
to be static. However, all of our algorithms and results hold if the set,
and even the number, of alternatives changes from round to round.

alternative aj .2 Thus the input at every round is a matrix
V t = (vti(aj))ij . Let vt(aj) denote the j-th column of ma-
trix V t, the vector of valuations for alternative aj . For every
round t, a Dynamic Social Choice Function (DSCF) chooses
a set of alternatives Ct, from which a single alternative ct is
chosen arbitrarily. Importantly, the problem is online, so we
may only use information up to time t in order to choose Ct.

We define a vector of accrued rewards at round t, ut,
where the accrued reward of agent i at round t is the sum
of i’s valuations for the chosen alternatives up to and includ-
ing round t, ut(i) =

∑t
t′=1 v

t′

i (ct′). We will often be inter-
ested in an agent’s accrued reward before the start of round t,
ut−1(i). For convenience, we will refer to the set of agents
with ut−1(i) = 0 by I0 when the round, t, is clear. The aver-
age utility of the agents over the first t rounds is uavg

t = 1
tut.

A DSCF is anonymous if applying permutation σ to the
agents, for all t, does not change the set of chosen alternatives
Ct, for any t. A DSCF is neutral if applying permutation σ
to the alternatives, for all t, results in choosing alternatives
σ(Ct) for all t. For the rest of this paper we only consider
anonymous, neutral DSCFs.

The Nash welfare (NW) of valuation vector u, NW (u), is
defined to be the product of the agents’ utilities, NW (u) =∏n
i=1 u(i). We also define NW+(u) =

∏
i:u(i)6=0 u(i) to

be the product of all positive entries of u. Our aim is to
maximize the NW of the average utility across all T rounds,
NW (uavg

T ). Note that while our setting allows for discount-
ing, we do not need to explicitly address it since the input
matrices can be pre-multiplied by the necessary factor before
being passed as input to the DSCF.

The benchmark algorithm is the optimal algorithm for
the offline problem, where an instance is given by the set
{V t}t∈{1,...,T}, and can be solved by a mixed integer con-
vex program. We denote the optimal Nash welfare by OPT.

Our algorithms and analysis use a formal infinitesimal
quantity ε. Numbers involving ε take the form

∑i=∞
i=−∞ aiε

i.3

For two such numbers a =
∑i=∞
i=−∞ aiε

i and b =∑i=∞
i=−∞ biε

i, let i′ be the smallest index for which ai 6= bi,
if it exists. Then a > b if and only if ai′ > bi′ . That is, we
compare numbers lexicographically by the lowest powers of
ε. Two numbers are equal if all coefficients are equal.

Many proofs, as well as additional simulations, are omitted
due to space constraints. The details can be found in the full
version of the paper, which appears on the authors’ websites.

3 Greedy Algorithms
3.1 Algorithm Definitions
In this section we present two greedy algorithms. We note
that, although these algorithms are designed to give an ap-
proximate solution to that which maximizes Nash welfare,
much of this section is devoted to showing that they satisfy

2Restricting valuations to be non-negative integers is necessary
for some of our results in Section 3. This is still sufficient for agents
to express their preferences to arbitrary levels of precision.

3While our framework allows for unbounded powers of ε, in this
paper we utilize only powers of ε between ε−1 and εn.
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Figure 1: Illustration of the difference between GREEDY and PF for
an instance with two agents. The horizontal axis represents agent
1’s reward, and the vertical axis represents agent 2’s reward. Fig-
ure 1(a) shows a general instance. GREEDY chooses the alternative
that maximizes area R1 + R2 + R3, while PF chooses the alterna-
tive that maximizesR1+R3 = vt2(aj)ut−1(1)+v

t
1(aj)ut−1(2) =

ut−1(1)ut−1(2)
[

vt
1(aj)

ut−1(1)
+

vt
2(aj)

ut−1(2)

]
. Figures 1(b) and 1(c) illus-

trate the choice of alternative a1 and a2 in Example 1, respectively.

desirable properties as algorithms in their own right. Such
an approach is not new in computational social choice –
for other papers that treat approximation algorithms as dis-
tinct voting rules see, for example, [Caragiannis et al., 2012;
2014; Elkind et al., 2014]. The first algorithm, GREEDY,
simply chooses ct to maximize NW (uavg

t ), the Nash wel-
fare at the end of the round. The second algorithm is a
linearized version of greedy known as PROPORTIONALFAIR
(PF) in the networking community [Viswanath et al., 2002;
Jalali et al., 2000], which maximizes the sum of percent-
age increases in accrued reward at each round. Equiva-
lently, it works by assigning each agent a weight wi (de-
note the vector of weights by w) equal to the inverse of
her accrued reward at the start of each round and chooses
Ct = argmaxaj∈Aw ·vt(aj), the alternatives that maximize
the weighted sum of valuations. Note that wi is proportional
to the product of the other agents’ accrued rewards.

Example 1. Let n = m = 2 and suppose that ut−1(1) = 1,
ut−1(2) = 3, and V t = ( 2 3

3 1 ). That is, agent 1 has valua-
tion 2 for alternative a1 and valuation 3 for alternative a2.
Agent 2 has valuation 3 for alternative a1 and valuation 1
for alternative a2. Choosing a1 results in Nash welfare of
(1 + 2) · (3 + 3) = 18, while choosing a2 results in Nash
welfare of (1 + 3) · (3 + 1) = 16. Thus GREEDY chooses a1.

Under PF, each agent is given weight inversely propor-
tional to their own accrued utility. That is, agent 1 has weight
1 and agent 2 has weight 1

3 . Now, taking the weighted sum of
valuations yields (1 · 2) + ( 13 · 3) = 3 for alternative a1, and
(1 · 3)+ ( 13 · 1) =

10
3 for alternative a2. Thus PF chooses a2.

A graphical illustration of the difference between the two
algorithms is given in Figure 1.

Unfortunately, both algorithms encounter problems while
there exist agents with zero accrued reward. For GREEDY, it
can (and, unless some alternative is valued positively by all
agents, will) be the case that NW (uavg

t ) = 0 for all choices
of ct, even when one alternative is weakly preferred to all
other alternatives by all agents. For PF, it is impossible to set
a weight wi = 1

ut−1(i)
for an agent with ut−1(i) = 0.

As a general framework for addressing this issue, we en-

dow each agent i ∈ I0 with some arbitrary, infinitesimal re-
ward at the start of each round. This is a natural way to al-
low the algorithms to give high priority to agents with zero
accrued reward while avoiding mathematical inconsistencies,
and it allows us to efficiently choose an alternative ct if we
are happy with selecting any member of the choice set Ct.

However, once we endow rewards (even infinitesimal
ones), we immediately lose scale-freeness, one of the appeal-
ing properties of using Nash welfare. Further, if we want to
choose a member of the choice set Ct uniformly at random,
there is no obvious distribution over endowed rewards that
allows us to do this – choosing endowed rewards uniformly
at random from some interval will not, in general, result in
drawing uniformly from Ct. So, while the technique of ran-
domly endowing infinitesimal reward is a general and intu-
itive way for the algorithms to handle all situations, we also
want an algorithm to compute the entire choice set Ct.

In the following, for both GREEDY and PF, we first present
the algorithm to select a single alternative via nondetermin-
istically endowing infinitesimal reward, followed by an algo-
rithm to compute the entire choice set Ct.

Algorithm 1 GREEDY (select one alternative)

1: Input ut−1

2: for i = 1, . . . , n do
3: Randomly choose 0 < xi ≤ 1
4: end for
5: Return ct ∈ argmaxaj∈A

∏n
i=1 max{ut−1(i) +

vti(aj), xiε}

The alternatives chosen by Algorithm 1 are exactly the al-
ternatives that result in a maximal number of agents with pos-
itive accrued reward and, subject to holding fixed the set of
agents with positive accrued reward, maximizes the product
of these agents’ rewards.

Algorithm 2 GREEDY (select all alternatives)

1: Input ut−1

2: Ct ← argmaxaj∈A |{i : ut−1(i) + vti(aj) > 0}|
3: for j ∈ Ct do
4: if ∃j′ such that
5: {i : ut−1(i)+vti(aj) > 0} = {i : ut−1(i)+vti(aj′) > 0}

and NW+(ut−1+vt(aj)) < NW+(ut−1+vt(aj′))
then

6: Ct ← Ct\{aj}
7: end if
8: end for
9: Return Ct

The version of PF for selecting a single alternative is pre-
sented as Algorithm 3.

To determine the complete choice set Ct, we solve a lin-
ear program for each alternative that explicitly determines
whether there is some infinitesimal endowment that results
in the alternative being chosen by PF.

A notable difference in the algorithms is that unlike
GREEDY, PF may leave some agents with zero accrued utility



Algorithm 3 PROPORTIONALFAIR (select one alternative)

1: Input ut−1

2: for i ∈ I0 do
3: Randomly choose 0 < xi ≤ 1
4: Randomly choose yi ∈ R
5: end for

6: wi ←

{
xi

1
ε + yi, if ut−1(i) = 0
1

ut−1(i)
, if ut−1(i) > 0

7: Return ct ∈ argmaxaj∈Aw · vt(aj)

Algorithm 4 PROPORTIONALFAIR (select all alternatives)

1: Input ut−1
2: Ct ← ∅
3: for j = 1, . . . ,m do
4: if the following linear program is unbounded

Maximize L

subject to w′ · vt(aj) ≥ w′ · vt(aj′) ∀j′

w′i =
1

ut−1(i)
∀i such that ut−1(i) > 0

w′i ≥ L ∀i such that ut−1(i) = 0

then
5: Ct ← Ct ∪ {aj}
6: end if
7: end for
8: Return Ct

even when it was possible to give positive utility to all agents.
Example 2. Let n = 2, m = 3, and t = 1. Suppose that
V1 = ( 3 0 1

0 3 1 ). Because t = 1, ut−1(1) = ut−1(2) = 0.
GREEDY chooses a3 since it is the only alternative

that provides non-zero reward to both agents. How-
ever, PF assigns the agents weights w1, w2 and chooses
argmaxj∈{1,2,3}w · vt(aj). Since it must be the case that
either 3w1 > w1 + w2 or that 3w2 > w1 + w2, it is not
possible for a3 to be chosen by PF.

For each algorithm, we prove equivalence of the two ver-
sions in the sense that the set generated by the ‘select all’ ver-
sion consists exactly of the alternatives that the ‘select one’
version generates for some nondetermistic choices.
Theorem 1. The set of alternativesCt chosen by Algorithm 2
at round t is exactly the set of alternatives that can be chosen
at round t by Algorithm 1.

The proof uses the fact that the product on Line 5 of Algo-
rithm 1 is maximized when the number of ε terms appearing
in the product is minimized.
Theorem 2. The set of alternativesCt chosen by Algorithm 4
at round t is exactly the set of alternatives that can be chosen
at round t by Algorithm 3.

Proof. We begin by showing that every alternative that can be
selected by Algorithm 3 is also selected by Algorithm 4. Let
ct be an alternative chosen by Algorithm 3 for some choices

of {xi}i∈I0 and {yi}i∈I0 . For all i 6∈ I0, set w′i =
1

ut−1(i)
,

and for all i ∈ I0, set w′i = xi

δ + yi for any δ > 0. As
δ → 0, the variables w′i grow arbitrarily large. Therefore, to
show feasibility of the variables {w′i} we need to show that
the first set of constraints in the LP in Algorithm 4 hold for
sufficiently small δ.

Fix an alternative aj . From Line 7 of Algorithm 3, we
know that w ·vt(ct) ≥ w ·vt(aj). The dominant coefficient
in this expression is that of ε−1. Comparing these coefficients
gives us ∑

i∈I0

xiv
t
i(ct) ≥

∑
i∈I0

xiv
t
i(aj). (1)

If Inequality 1 is strict, then we know that
∑
i∈I0

xi

δ v
t
i(ct) >∑

i∈I0
xi

δ v
t
i(aj) for any δ > 0, and we can make the gap

arbitrarily large by setting δ sufficiently small. In particu-
lar, we can force the gap to be large enough that the fol-
lowing inequality holds for any fixed values of {yi}i∈I0 and
{ut−1(i)}i6∈I0 :∑

i∈I0

(xi
δ

+ yi

)
vti(ct) +

∑
i 6∈I0

1

ut−1(i)
vti(ct)

>
∑
i∈I0

(xi
δ

+ yi

)
vti(aj) +

∑
i 6∈I0

1

ut−1(i)
vti(aj),

which is precisely the first constraint in the linear program
from Algorithm 4.

If Inequality 1 holds with equality, then we turn attention
to the coefficient of ε0 in the dot product from Line 7 of Al-
gorithm 3. This tells us that∑

i∈I0

yiv
t
i(ct) +

∑
i 6∈I0

1

ut−1(i)
vti(ct)

≥
∑
i∈I0

yiv
t
i(aj) +

∑
i 6∈I0

1

ut−1(i)
vti(aj). (2)

Dividing Inequality 1 by δ and adding Inequality 2 gives∑n
i=1 w

′
iv
t
i(ct) ≥

∑n
i=1 w

′
iv
t
i(aj), satisfying the first con-

straint of the LP, so the weights {w′i} are feasible. These
weights allow us to set L to arbitrarily large values as δ → 0,
so the LP is unbounded and Algorithm 4 selects ct.

We now show the other direction, that every alternative se-
lected by Algorithm 4 can also be selected by Algorithm 3.
Let ct ∈ Ct. That is, the optimal value for the LP in Algo-
rithm 4 is unbounded. Then it is the case that there exist vec-
tors p and q 6= 0 for the values of the variables in the LP such
that p + kq is feasible for all k > 0 and q has positive ob-
jective value (this is a known fact about linear programs with
unbounded value; see, e.g., [Nemhauser and Wolsey, 1988],
Theorem 4.7). We use these to exhibit values of {xi}i∈I0 and
{yi}i∈I0 so that ct is chosen by Algorithm 3.

Set yi = pi and xi = qi for all i ∈ I0. Let aj ∈ A. By the
first set of constraints from the LP,∑

i∈I0

(pi + kqi)v
t
i(ct) +

∑
i 6∈I0

1

ut−1(i)
vti(ct)

≥
∑
i∈I0

(pi + kqi)v
t
i(aj) +

∑
i 6∈I0

1

ut−1(i)
vti(aj) (3)



for all k > 0. In particular, this implies that it can not be the
case that

∑
i∈I0 qiv

t
i(ct) <

∑
i∈I0 qiv

t
i(aj), or else Inequal-

ity 3 would be violated for large enough values of k. There
are two possiblities.

First, suppose that
∑
i∈I0 qiv

t
i(ct) >

∑
i∈I0 qiv

t
i(aj).

Then, by our choice of xi = qi for all i ∈ I0, we have that∑
i∈I0 xiv

t
i(ct) >

∑
i∈I0 xiv

t
i(aj). But, as discussed earlier,∑

i∈I0 xiv
t
i(aj) is exactly the dominant term in Line 7 of Al-

gorithm 3. Therefore, this dot product is maximized by ct, so
ct is chosen by Algorithm 3.

Finally, suppose that
∑
i∈I0 qiv

t
i(ct) =

∑
i∈I0 qiv

t
i(aj).

So the dominant term in Line 7 of Algorithm 3 is equal for ct
and aj . By Inequality 3, it must be the case that∑
i∈I0

piv
t
i(ct) +

∑
i 6∈I0

vti(ct)

ut−1(i)
≥
∑
i∈I0

piv
t
i(aj) +

∑
i 6∈I0

vti(aj)

ut−1(i)
.

By the choice of yi = pi for all i ∈ I0, the above inequality
holds when we substitute yi for every instance of pi. After
making that substitution, we are left with exactly the expres-
sion for the coefficient of ε0 in Line 7 of Algorithm 3. Since
the coefficient is at least as large for ct as for aj , and the
ε−1 coefficients are equal (and there are no further non-zero
terms), ct may be chosen by Algorithm 3.

3.2 Axiomatization of PROPORTIONALFAIR
Now that we have given a precise definition of the PF mech-
anism and justified it, in this section we provide an axiomati-
zation of the PF mechanism.

A DSCF is scale-free if it is not affected by a uniform (mul-
tiplicative) scaling of some agent’s valuations. This property
is desirable because it means we do not require any sort of
agreement or synchronization as to the units of measurement
used by the agents in their reporting.
Definition 1. Let k > 0. Say that a DSCF satisfies scale-free-
ness (SF) if Ct is unchanged (for the same choice of tiebreak-
ing in earlier rounds) if we replace vti(aj) by k ·vti(aj) for all
aj ∈ A for every t = 1, . . . , T .

A DSCF is separable into single-minded agents if the cho-
sen alternative at a round is unchanged by replacing an agent
by several new agents with the same accrued reward, each of
which has unit positive valuation for only one alternative. The
axiom reflects that we can interpret utilities cardinally rather
than just ordinally.

Definition 2. Say that a DSCF is separable into single-
minded agents (SSMA) if, when all agents have the same ac-
crued utility ut−1(i) = u > 0, Ct is unchanged if we replace
each agent with several new agents (denoted generically by x)
according to the following scheme: For every vti(aj) ∈ V t,
create vti(aj) agents each with ut−1(x) = u, vtx(aj) = 1,
and vtx(aj′) = 0 for all j′ 6= j.

The plurality axiom says that if all agent valuation vectors
are unit vectors, and we have no reason to distinguish be-
tween agents, then the alternatives favored by the most agents
should be chosen.
Definition 3. Say that a DSCF satisfies plurality (P) if, when
all agents have unit valuation for only a single alternative,

and all agents have the same (non-zero) accrued utility, then
Ct consists of the alternatives with non-zero valuation from
the most agents.

Plurality says nothing about the case when some agent has
ut−1(i) = 0. The idea of the axiom (in combination with
SF) is that we should choose the alternative which provides
the greatest utility, relative to what agents already have. How-
ever, if agents have zero accrued reward then it is not possible
to make accurate comparisons as to the relative benefit each
agent receives.

The final axiom says that, if we restrict attention to only
agents with zero accrued reward, alternatives which are dom-
inated by a mixture of other alternatives should not be played.
In the case that two alternatives are equivalent with respect to
agents with ut−1(i) = 0, we should only choose an alterna-
tive if it would still be chosen in the absence of the agents with
ut−1(i) = 0. The definition is inspired by mixed strategy
dominance in game theory and, intuitively, formalizes that
we should prioritize agents with zero utility above all others.

We first define the notion of 0-dominance.
Definition 4. Let z1, . . . , zm be nonnegative coefficients with∑
j′ zj′ = 1. We say that an alternative aj is strictly 0-

dominated by the mixture of alternatives
∑
j′ zj′aj′ at round

t if
∑
j′ zj′v

t
i(aj′) ≥ vti(aj) for all agents iwith ut−1(i) = 0,

with at least one of these inequalities being strict. If all in-
equalities hold with equality, then we say that aj is weakly
0-dominated by the mixture

∑
j′ zj′aj′ .

We say that aj is (strictly, weakly) 0-dominated if there
exists some mixture of alternatives that (strictly, weakly) 0-
dominates it.
Definition 5. A DSCF f satisfies No 0-Dominated Alterna-
tives (NZDA) if it never chooses a strictly 0-dominated alter-
native, and chooses a weakly 0-dominated alternative aj only
if aj would be chosen by f under a scenario where V t was
modified to include (1) only the agents with ut−1(i) > 0, and
(2) only the (mixtures of) alternatives that weakly 0-dominate
aj (including aj itself).
Lemma 1. PF satisfies SF, SSMA, P, and NZDA.

We now show that any mechanism that achieves SF,
SSMA, P, and NZDA simultaneously must agree with PF. We
note that of the four axioms, GREEDY satisfies only SF and
P. Despite GREEDY being (arguably) simpler than PF, we do
not know a good axiomatization for it.
Theorem 3. Let f be a DSCF that satisfies SF, SSMA, P, and
NZDA. Suppose that f chooses alternative ct at round t. Then
PF must also choose ct at round t (for the same history up to
that point).

Proof. We have already shown that PF satisfies SF, SSMA, P,
and NZDA. It remains to show that f ’s choice of alternative
can also be chosen by PF. In the case that all agents have
ut−1(i) > 0, we use the fact that f satisfies SF, SSMA, and
P to show that f ’s choice of alternative is the same as one
chosen by PF. First we use SF to scale the agents’ accrued
utilities to be the same (since they are all non-zero), then use
SSMA to replace each agent with several new agents which
have unit vector valuations, and then use plurality to choose



ct (which can be shown to coincide with that chosen by PF).
Due to space constraints, we omit the details.

The more intricate case is when there exists at least one
agent with ut−1(i) = 0. Since f satisfies NZDA, we know
that f never chooses a strictly 0-dominated alternative and
only chooses a weakly 0-dominated alternative if f would
still choose that alternative when V t is modified according to
Definition 5. To complete the proof, we show that PF selects
all alternatives that can possibly be chosen by f . Specifi-
cally, we show that PF can choose all alternatives that are
not (strictly or weakly) 0-dominated, as well as any weakly
0-dominated alternative aj∗ that is chosen by PF for the mod-
ified V t. That is, when all alternatives are removed other than
aj∗ and (mixtures of) alternatives that weakly 0-dominate it,
and all agents with ut−1(i) = 0 are removed. This is suffi-
cient since we have shown that PF chooses every alternative
chosen by f when all agents have ut−1(i) > 0 (which is the
case when all agents with ut−1(i) = 0 are removed).

An alternative aj∗ is either (a) strictly 0-dominated, or (b)
weakly 0-dominated and not chosen by PF when V t is modi-
fied according to Definition 5, if and only if the optimal value
of the following LP is negative for arbitrarily large values of
H . We omit the index of the round t from the agents’ valua-
tions for clarity.

Minimize H
∑
i∈I0

∑
aj∈A

(vi(aj∗)− vi(aj))zj

+
∑
i6∈I0

∑
aj∈A

1

ut−1(i)
(vi(aj∗)− vi(aj))zj (4)

subject to
∑
aj∈A

vi(aj)zj ≥ vi(aj∗) ∀i ∈ I0∑
aj∈A

zj = 1, zj ≥ 0 ∀j

If aj∗ is strictly dominated then the first term of the objective
can be made negative (and therefore the whole objective can
be made negative when H is large enough). If aj∗ is only
weakly dominated, then the first term can be set to 0, and the
second term to be negative when there exists a mixture of al-
ternatives that is chosen by PF (ahead of aj∗ ) according to
the modified V t. Conversely, if the optimal value of the ob-
jective is negative then either there exist values for {zj} such
that the first term is negative (which, combined with the first
set of constraints, says that aj∗ is strictly 0-dominated), or
there exist values for {zj} such that the first term is zero and
the second term is negative. If the second term is negative
then the weighted sum of valuations for the mixed alternative
defined by {zj} is higher than the weighted sum of valua-
tions for aj∗ , for the weights defined by PF when restricted
to agents i 6∈ I0. This proves correctness of the LP.

We want to show that PF can choose any alternative for
which the the optimal value of LP (4) is nonnegative. Let aj∗
be such an alternative. We show that aj∗ can be chosen by
PF by considering the dual, which has variables wi for all
i ∈ I0 (one for each constraint) and r (corresponding to the

Table 1: Spark Applications

Category Applications
Statistics Correlation

Classification DecisionTree, GradientBoostedTrees,
SVM, LinearRegression, NaiveBayesian

Pattern Mining FP Growth
Clustering KMeans
Collaborative Filtering ALS

Graph Processing Pagerank, ConnectedComponents,
TriangleCounting

constraint on the sum of the zj):

Maximize
∑
i∈I0

vi(aj∗)wi − r

subject to
∑
i∈I0

vi(aj)wi − r ≤ H
∑
i∈I0

(vi(aj∗)− vi(aj))

+
∑
i 6∈I0

vi(aj∗)− vi(aj)
ut−1(i)

∀j ∈ {1, . . . ,m}

wi ≥ 0 ∀i ∈ I0
Let r =

∑
i∈I0 vi(aj∗)wi − r denote the objective. The first

set of constraints can now be rewritten as

r +
∑
i∈I0

(wi +H)vi(aj) +
∑
i6∈I0

1

ut−1(i)
vi(aj)

≤
∑
i∈I0

(wi +H)vi(aj∗) +
∑
i6∈I0

1

ut−1(i)
vi(aj∗).

Since aj∗ is not 0-dominated, the optimal value of LP (4) is
at least zero for any arbitrarily large value of H . By strong
duality, the optimal value of the dual is therefore also at least
zero for arbitrarily large values of H . Thus, if we set w′i =
wi + H for all i ∈ I0 and w′i = 1

ut−1(i)
for all i ∈ I0,

we have an unbounded and feasible set of weights for the
linear program to choose aj∗ in the definition of Algorithm 4.
Therefore, aj∗ can be chosen by PF.

4 Simulations
We ran the algorithms on data gathered from a power boost
allocation problem. In this problem, n computer applications
are each allocated a base level of power, and compete for
m < n additional (indivisible) units of extra power (power
boosts) at each of T rounds (each application gets at most
one boost per round). We obtain our instance from Apache
Spark [Zaharia et al., 2010] benchmarks.

Table 1 lists the twelve Spark applications in our instance,
each of which is defined by a fixed number of tasks. We pro-
file tasks’ completion time. We take the number of tasks com-
pleted in a round by an application as that application’s util-
ity. Thus, for each application a, we estimate the base and
boosted power utility (ubase

a,t and uboost
a,t ) in each round.

In our instance, there are two power boosts to be allocated.
So at each round there are

(
12
2

)
alternatives, one for each pair

of applications. For an alternative j corresponding to power
boosts for applications a and b, we have that vta(j) = uboost

a,t ,
vtb(j) = uboost

b,t , and vtc(j) = ubase
c,t for all other applications

c 6= a, b. We have 497 rounds in the instance we tested.



Stochastic Greedy PF
0

0.2

0.4

0.6

0.8

1

N
o
rm

a
liz

e
d
 P

e
rf

o
rm

a
n
c
e

Figure 2: Nash Social Welfare achieved by the algorithms, normal-
ized against OPT (which has performance 1).

Figure 3: Nash Social Welfare achieved by GREEDY and PF as a
function of the number of rounds.

We evaluate the performance of GREEDY and PF against
the optimal offline solution, and also against an algorithm de-
signed for online stochastic convex programming4 [Agrawal
and Devanur, 2015] - a class of problems that includes the one
we study. To our knowledge this algorithm is the state of the
art for such problems in terms of theoretical guarantees. We
refer to this algorithm as STOCHASTIC. The algorithm works
by maximizing a weighted sum of valuations at each round,
where the weights are updated at each round using online
convex optimization techniques. The theoretical guarantees
for STOCHASTIC are in expectation over instances where the
order of the input matrices is randomly permuted. In the in-
stance we test, however, the utilities are highly correlated over
time. Applications that would benefit from a power boost in
some round t are more likely to also benefit from a power
boost in round t + 1, because application phases may span
multiple rounds. Due to this and other technical reasons, the
theoretical guarantees do not apply here. The performance of
the three algorithms is shown in Figure 2.

We see that STOCHASTIC performs relatively poorly, while
GREEDY and PF each achieve about 80% of the performance
of OPT. This motivates us to examine the difference in per-
formance between GREEDY and PF for smaller values of T ,
as the difference between these two algorithms is most pro-
nounced while a single decision has a relatively large effect.

To generate smaller instances, we sample starting rounds
from the full set of 497 rounds. For each value of T in Fig-
ure 3, we randomly generate a starting round t ∈ [1, 497−T ]
and consider the T rounds starting at t, for 100 random
choices of t. Our measure of performance is NW (uavg

T ), al-
lowing for fair comparisons between different values of T .

We note that PF consistently performs slightly worse than

4Of course, there are other online scheduling algorithms but they
do not pursue Nash welfare as an objective.

GREEDY, which is consistent with the performance on the
full instance. The difference is most pronounced on small
values of T , since this is where the two algorithms differ the
most. Performance increases with T , as we would expect,
since more rounds allow the algorithms to choose more flexi-
bly once all applications have positive accrued reward. How-
ever, the increase is not monotonic. One explanation for this
is because we throw away any choice of starting round t for
which it is impossible to achieve NW (uavg

T ) > 0 (it might
be the case that for all T rounds, some application cannot
receive positive utility). Since smaller values of T result in
more choices of t being disqualified, there is a sense in which
we are selecting for ‘easier’ instances for smaller values of T .

5 Conclusion
Election designers and social choice researchers often do not
consider the fact that many elections do not occur in isola-
tion, but rather are repeated over time. In this work, we have
provided a framework to allow for the design and analysis
of dynamic election protocols, and repeated decision mak-
ing rules generally. We have presented two candidate online
algorithms for solving these dynamic problems. Our simu-
lations show that both algorithms perform well, but do not
determine that either is clearly a better choice than the other.
While GREEDY achieves slightly higher performance, PRO-
PORTIONALFAIR has the advantage of being justified by the
axiomatization given in this paper.

Our work leaves a lot of scope for future research. One
direction would be to design a more precise model of voter
preferences, possibly modeling changing preferences by an
MDP [Boutilier and Procaccia, 2012; Parkes and Procaccia,
2013]. We have also not considered modeling discounting
of the agents’ utilities. Finally, there are many interesting
questions regarding strategic behavior by the agents. In the
most general setting, there appears to be no hope for a fair,
strategy-proof rule due to the free-rider problem: agents are
incentivized to under-report their utility for an alternative that
gets chosen, and are thus indistinguishable from an agent that
is genuinely unhappy with the chosen alternative. However, it
may be possible to regain some (limited) strategy-proofness
in a more restricted setting. For instance, what if we place
restrictions on the utilities that can be reported, or restrict our
attention to private goods?
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