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We study the problem of allocating indivisible goods among agents with additive valuations. When ran-

domization is allowed, it is possible to achieve compelling notions of fairness such as envy-freeness, which

states that no agent should prefer any other agent’s allocation to their own. When allocations must be

deterministic, achieving exact fairness is impossible but approximate notions such as envy-freeness up to

one good can be guaranteed. Our goal in this work is to achieve both simultaneously, by constructing a

randomized allocation that is exactly fair ex-ante (before the randomness is realized) and approximately fair

ex-post (after the randomness is realized). The key question we address is whether ex-ante envy-freeness

can be achieved in combination with ex-post envy-freeness up to one good. We settle this positively by

designing an efficient algorithm that achieves both properties simultaneously. The algorithm can be viewed

as a desirable way to instantiate a lottery for the Probabilistic Serial rule (Bogomolnaia and Moulin 2001).

If we additionally require economic efficiency, we obtain three impossibility results that show that ex-post or

ex-ante Pareto optimality is impossible to achieve in conjunction with combinations of fairness properties.

Hence, we slightly relax our ex-post fairness guarantees and present a different algorithm that can be viewed

as a fair way to instantiate a lottery for the Maximum Nash Welfare allocation rule.

Key words : fair resource allocation, indivisible goods, randomization and approximation

* This paper is an extended version that combines the main results of earlier work by Freeman et al. (2020) and Aziz

(2020).
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1. Introduction

Allocating resources in non-monetary environments is commonplace in social institutions. Estates

must be divided among beneficiaries, jointly held assets split between partners in a divorce, tasks

assigned to employees, and educational resources distributed among public schools. Versions of this

resource allocation problem—ranging from applied to theoretical models—have been studied in

various research communities including mathematics, economics, operations research, and computer

science (Brams and Taylor 1996, Matoušek et al. 2003, Moulin 2003, Brandt et al. 2016). A central

concern in these settings is fairness: how can these decisions be made so as to not systematically

disadvantage individuals or groups of people?

In this work, we consider a fundamental problem in fair resource allocation. A set of m indivisible

goods are to be divided among a set of n agents who have different preferences over the goods. An

agent’s preferences are expressed through a valuation function that assigns a value to every subset

of the goods; we use the terms “value,” “valuation,” and “utility” interchangeably. We restrict

ourselves to the case of additive valuation functions, in which each agent has a value for each good

and their value for a subset is simply the sum of their values for the goods in the subset. Additive

valuations ignore complementary and substitutive effects that may occur in practice, but they are

an appealing tradeoff between simplicity and expressiveness. For instance, the Adjusted Winner

procedure (Brams and Taylor 1996) that is commonly used in dispute resolution assumes additive

valuations, as does the popular fair division website Spliddit (http://spliddit.org).

A particularly appealing notion of fairness is envy-freeness (EF) (Gamow and Stern 1958, Foley

1967), which requires that no agent values the resources allocated to another agent more than

the resources allocated to herself. When allocations are deterministic, it is not always possible

to achieve envy-freeness; imagine two agents liking a single good, which must be given to one of

them, leaving the other envious. The fundamental unfairness present in deterministic allocations

motivates the use of randomized mechanisms instead. Indeed, many mechanisms used in practice

exploit lotteries to, for example, determine a priority ordering over the agents. With the power

http://spliddit.org
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of randomization, it is easy to achieve ex-ante envy-freeness: if a single agent is chosen uniformly

at random and then allocated all the goods, no agent envies any other in expectation. However,

this allocation induces a large amount of envy ex-post, since one agent receives everything and all

others receive nothing.

While we cannot eliminate ex-post envy, a significant body of work has focused on defining and

achieving approximate fairness for deterministic allocations (Bouveret et al. 2016). One compelling

notion is envy-freeness up to one good (EF1) (Lipton et al. 2004, Budish 2011), which requires

that the envy of any agent towards another agent can be eliminated by the removal of at most one

good from the envied agent’s allocation. A deterministic EF1 allocation can always be achieved.

For instance, it is known that the round-robin method — where the agents choose goods one at

a time in a repeating fixed order — is guaranteed to output an EF1 allocation. Agents who come

later in the ordering may envy those who come early, but only up to a single good. One might hope

that if the order of the agents was chosen randomly among the n! possible orderings then ex-ante

envy-freeness could additionally be achieved, but this is not the case (see additional discussion

in Section 3). Other methods of achieving deterministic EF1 allocation are known (Lipton et al.

2004, Caragiannis et al. 2019, Barman et al. 2018, Brustle et al. 2020), but do not naturally lend

themselves to exploiting randomization.

This motivates a natural question. Can we retain envy-freeness up to one good as an ex-post

guarantee, and simultaneously obtain (exact) envy-freeness ex-ante? In other words, can we always

randomize over EF1 allocations such that the resulting randomized allocation is EF? We show

that the answer to this natural and elegant question is yes. More generally, we study various

combinations of ex-ante and ex-post fairness and efficiency guarantees, and identify combinations

that can (and cannot) be achieved simultaneously. The efficiency concepts that we examine are

all based on the Pareto optimality (PO) principle: we want to identify allocations such that there

does not exist another allocation that all agents weakly prefer and at least some agent strictly

prefers. Our constructive results yield efficient algorithms; these improve upon prior algorithms

which provide either only ex-ante or only ex-post guarantees, thus paving the way for fairer resource

allocation in practice.
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Figure 1 Logical relations between fairness and efficiency concepts. An arrow from (A) to (B) denotes that

(A) implies (B). The properties in green and lime are simultaneously satisfied by algorithms. The combined

properties in the pink or red shapes are impossible to simultaneously satisfy.

1.1. Our Results

Our first technical result is an algorithm called the PS-Lottery algorithm (Algorithm 1) that

simultaneously achieves ex-ante EF and ex-post EF1 (Theorem 2). The algorithm takes only the

agents’ ordinal preferences over goods as input and achieves the two guarantees simultaneously with

respect to all additive utilities consistent with these ordinal preferences. Following the fair division

literature, these stronger guarantees can be phrased as ex-ante SD-EF and ex-post SD-EF1, where
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SD stands for (first-order) stochastic dominance. The algorithm is presented in Section 3. It calls the

probabilistic serial algorithm (Bogomolnaia and Moulin 2001) as well as Birkhoff’s decomposition

algorithm as subroutines. The algorithm’s outcome is ex-ante equivalent to the outcome of the

probabilistic serial rule. In particular, it can be viewed as a desirable way to instantiate a lottery

for the ex-ante outcome of the probabilistic serial rule. We show how the algorithm can be further

modified using parametric network flows to additionally achieve both ex-ante and ex-post versions

of SD-efficiency (Theorem 3). SD-efficiency can be viewed as an ordinal and very weak version of

Pareto optimality (with respect to additive valuations). If an allocation is not SD-efficient, then

there exists another allocation that gives each agent weakly more, and at least one agent strictly

more, utility for all utility functions consistent with the ordinal preferences.

If we additionally want to achieve Pareto optimality, which states that it should be impossible to

find an allocation that improves some agent’s utility without reducing any other agent’s, then the

PS-Lottery algorithm can be viewed as being maximal in the sense of the following impossibility

results that we prove in Section 4 (see Figure 1 for a visual illustration). First, it is impossible to

achieve ex-ante SD-EF, ex-post EF1, and ex-post Pareto optimality (Theorem 4). Second, achieving

ex-ante EF and ex-post EF1 along with ex-post fractional Pareto optimality (a stronger notion of

efficiency than ex-post Pareto optimality) is also impossible (Theorem 5). Third, ex-ante fractional

Pareto optimality (that is, with respect to the randomized allocation) and ex-ante SD-EF are

incompatible (Theorem 6).

In Section 5, we show that strong ex-ante guarantees — in terms of both fairness and economic

efficiency — can be achieved if we are willing to compromise on the ex-post guarantee. In particular,

we are able to achieve ex-ante group fairness (GF) (Conitzer et al. 2019), which generalizes both

envy-freeness (note that this is weaker than the SD-EF from Theorem 6) and fractional Pareto

optimality, in conjunction with two ex-post fairness properties that are incomparable but are both

implied by EF1: proportionality up to one good (Prop1) (Conitzer et al. 2017) and envy-freeness up

to one good more-and-less (EF1
1) (Barman and Krishnamurthy 2019); see Theorem 8 for a formal
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statement. Our algorithm applies the rounding technique of Budish et al. (2013) to the well-known

Maximum Nash Welfare (MNW) allocation; in particular, it coincides with the ex-ante MNW

outcome. The main technical contribution in this section is to tighten the analysis of Budish et al.

(2013) in a way that implies the axiomatic properties that we desire.

Our results indicate that understanding the compatibility of fairness and efficiency from a com-

bined ex-ante and ex-post perspective provides interesting challenges that can also be explored in

other allocation and collective-decision problems.

1.2. Related Work

A large body of work in computer science and economics has focused on finding exactly ex-ante fair

randomized allocations as well as approximately fair deterministic allocations, and we cite those

works as appropriate throughout the paper. Combining the two approaches was recently listed as

an “interesting challenge” by Aziz (2019); however, little work has focused on this problem. Two

exceptions are Aleksandrov et al. (2015) and Budish et al. (2013). Aleksandrov et al. (2015) consider

randomized allocation mechanisms for an online fair division problem and analyze their ex-ante

and ex-post fairness guarantees. The style of their results is very similar to ours, however they

restrict attention to binary utilities, which simplifies the problem significantly. Budish et al. (2013)

study the problem of implementing a general class of random allocation mechanisms subject to

ex-post constraints, and we build on this work in Section 5. The ex-post constraints that Budish et

al. (2013) establish are not the same as ours; in particular, they do not consider ex-post axiomatic

guarantees from the fair division literature as we do.

In the random assignment literature in economics, the idea of constructing a fractional assign-

ment and implementing it as a lottery over pure assignments was introduced by Hylland and

Zeckhauser (1979). Later work has studied both ex-ante and ex-post fairness and efficiency guar-

antees provided by mechanisms in this setting (Bogomolnaia and Moulin 2001, Abdulkadiroğlu

and Sönmez 1998, Chen and Sönmez 2002, Nesterov 2017), but most of this work studies ordinal

utilities and does not consider approximate notions of ex-post fairness. (The standard random
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assignment setting has n agents, n goods, and requires that each agent receive exactly one good.

The notions of ex-post fairness that we use in this work are vacuous in this restricted setting.)

Gajdos and Tallon (2002) study the relationship between ex-ante and ex-post fairness but in their

model the randomness comes from nature, not the allocation rule. Other works consider the prob-

lem of implementing a fractional outcome over deterministic outcomes subject to (possibly soft)

constraints (Budish et al. 2013, Akbarpour and Nikzad 2020), but the constraints allowed by these

papers do not fully capture our ex-post fairness notions.

While we focus on ex-ante EF and ex-post EF1 (and relaxations of these properties), many

other definitions of fairness have been studied in the literature on resource allocation. For example,

equitability requires that all agents receive the same utility (Dubins and Spanier 1961, Alon 1987,

Cechlárová et al. 2013), and also permits additive “up to one good” relaxations (Gourvès et al.

2014, Freeman et al. 2019). While envy-freeness is often achieved by maximizing the product of

utilities (see Section 5), equitability is achieved by maximizing a different common welfare function:

the minimum utility. Other fairness notions have been considered in followup work to this paper.

Halpern et al. (2020) study ex-ante and ex-post fairness in the context of binary valuations, and

show that the fractional MNW rule can be implemented as a distribution over deterministic MNW

allocations. In a similar vein, Babaioff et al. (2021) pursue our ‘best of both worlds’ approach but

consider alternative fairness concepts related to maximin fair share (Budish 2011). In another recent

paper, Caragiannis et al. (2021) consider a notion called interim envy-freeness that is between the

stringent notion of ex-post envy-freeness and the weak notion of ex-ante envy-freeness.

2. Preliminaries

For any positive integer r ∈ N, define [r] := {1, . . . , r}. Let N = [n] denote a set of agents, and M

denote a set of goods where m := |M |.

Fractional and Randomized Allocations. A fractional allocation of the goods in M to the agents

in N is specified by a non-negative n×m matrix A∈ [0,1]n×m such that for every good g ∈M , we

have
∑

i∈N Ai,g = 1; here, Ai,g denotes the fraction of good g assigned to agent i.
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A fractional allocation A is integral if Ai,g ∈ {0,1} for every i ∈ N and g ∈M . For integral

allocations, we will find it convenient to denote the binary vector Ai = (Ai,g)g∈M as a set Ai :=

{g ∈M :Ai,g = 1}. We will refer to Ai as the bundle of goods assigned to agent i, and denote the

allocation A as an ordered tuple of bundles A= (A1, . . . ,An). When we simply say ‘an allocation’,

it will mean a fractional allocation, unless otherwise clear from the context. For notational clarity,

we use the letters X or Y for fractional allocations, and write A or B for integral allocations. Let

X be the set of all fractional allocations.

A randomized allocation is a lottery over integral allocations (we denote them by bold let-

ters for clarity). Formally, a randomized allocation X is specified by a set of ℓ ∈ N ordered pairs

{(pk,Ak)}k∈[ℓ], where, for every k ∈ [ℓ], Ak is an integral allocation implemented with probability

pk ∈ [0,1], and
∑

k∈[ℓ] p
k = 1. The support of X is the set of integral allocations {A1, . . . ,Aℓ}.

A randomized allocation X := {(pk,Ak)}k∈[ℓ] is naturally associated with the fractional allocation

X :=
∑

k∈[ℓ] p
kAk, where Xi,g is the (marginal) probability of agent i receiving good g under X. In

this case, we say that randomized allocation X implements fractional allocation X. There may be

many randomized allocations implementing a given fractional allocation.

Preferences. Each agent i∈N has an additive valuation function vi, where vi(g)≥ 0 denotes the

agent’s utility for fully receiving good g ∈M . Note that vi induces a weak order ≿i over goods

where g≿i g
′ if and only if vi(g)≥ vi(g

′), and g≻i g
′ if and only if vi(g)> vi(g

′). The utility of agent

i under an allocation X ∈X is given by, with slight abuse of notation, vi(Xi) =
∑

g∈M Xi,g · vi(g).

We assume that for each good g ∈M , there exists at least one agent i ∈N with vi(g)> 0. This is

without loss of generality as goods valued zero by everyone can be allocated arbitrarily.

Allocation rule. A fair division instance I is defined by the triple (N,M, (vi)i∈N). We let I denote

the set of all instances. An allocation rule f : I → 2X maps instances to (sets of) allocations.
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Example 1. Consider an instance with two agents 1,2 and four goods g1, g2, g3, g4. Then, the

following is one possible fractional allocation:

X =


g1 g2 g3 g4

1 1/2 1/2 1/2 1/2

2 1/2 1/2 1/2 1/2

.
The fractional allocation X can be achieved by the following randomized allocation (other choices

are also possible) that is based on a probability distribution over two integral allocations:

X =
1

2
·


g1 g2 g3 g4

1 1 1 1 1

2 0 0 0 0

+
1

2
·


g1 g2 g3 g4

1 0 0 0 0

2 1 1 1 1

.
We now discuss a number of properties concerning fairness and efficiency of allocations and

allocation rules.

Ex-ante and ex-post properties. Central to this paper is the distinction between a property hold-

ing ex-ante and ex-post. For any property ⟨P ⟩ defined for a fractional allocation, we say that a

randomized allocation X satisfies ⟨P ⟩ ex-ante if the fractional allocation X it implements satisfies

⟨P ⟩. Similarly, for any property ⟨Q⟩ defined for an integral allocation, we say that a randomized

allocation X satisfies ⟨Q⟩ ex-post if every integral allocation in its support satisfies ⟨Q⟩.

2.1. Fairness Properties

Our central fairness concept is envy-freeness, which plays a fundamental role in the economic

literature on fairness. Envy-freeness requires that an agent has weakly more value for their own

bundle than any other agent’s bundle.

Definition 1 (Envy-Freeness (EF); Gamow and Stern 1958, Foley 1967). An alloca-

tion X is envy-free if for every pair of agents i, j ∈N , we have vi(Xi)≥ vi(Xj).

One can also consider a more stringent notion of envy-freeness that requires that an agent has

weakly more value for their own bundle than for any other agent’s bundle with respect to all

additive valuation functions consistent with the agent’s ordinal preferences. The requirement can
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be captured via the first-order stochastic dominance (SD) relation as follows. Given allocations

X and Y , we say that agent i SD-prefers Xi to Yi, written Xi ≿SD
i Yi, if for every good g ∈M ,

we have that
∑

g′∈M :g′≿ig
Xi,g′ ≥

∑
g′∈M :g′≿ig

Yi,g′ . It is easy to check that Xi ≿SD
i Yi is equivalent

to v′i(Xi)≥ v′i(Yi) under every additive valuation v′i consistent with the ordinal preference relation

≿i. We write Xi ≻SD
i Yi if Xi ≿SD

i Yi holds but Yi ≿SD
i Xi does not. Based on the SD preference

relation, we can define SD-envy-freeness as follows.

Definition 2 (SD-Envy-Freeness (SD-EF); Bogomolnaia and Moulin 2001). An

allocation X is SD-envy-free if for every pair of agents i, j ∈N , we have Xi ≿SD
i Xj.

Both envy-freeness and SD-envy-freeness are concepts that apply to both fractional allocations

and integral allocations. Hence each leads to an ex-ante and an ex-post version for randomized

allocations: the former is satisfied if the induced fractional allocation is (SD-)envy-free, and the

latter if each integral allocation in the support is (SD-)envy-free.

As we have already seen, an integral allocation satisfying envy-freeness is not guaranteed to exist.

In view of this, a literature has developed that focuses on relaxations of envy-freeness, including

the following property requiring that pairwise envy can be eliminated by removing a single good

from the envied agent’s bundle.

Definition 3 (Envy-Freeness Up To One Good (EF1); Lipton et al. 2004, Budish 2011).

An integral allocation A is envy-free up to one good if for every pair of agents i, j ∈N such that

Aj ̸= ∅, we have vi(Ai)≥ vi(Aj \ {g}) for some good g ∈Aj.

Since EF1 is defined only for integral allocations, a randomized allocation can be ex-post EF1

(if each integral allocation in its support satisfies EF1) but ex-ante EF1 is not well defined. We

also consider the following natural strengthening of EF1.

Definition 4 (SD-Envy-Freeness up to One Good (SD-EF1)). An integral allocation A

is SD-envy-free up to one good if for every pair of agents i, j ∈ N such that Aj ̸= ∅, we have

Ai ≿SD
i Aj \ {g} for some good g ∈Aj.

Equivalently, an allocation is SD-EF1 if it is EF1 under any additive valuation functions of the

agents consistent with (≿i)i∈N .
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2.2. Efficiency

Next, we discuss economic efficiency of allocations.

Definition 5 (Fractional Pareto Optimality (fPO) and Pareto Optimality (PO)).

An allocation X is fractionally Pareto optimal if there is no fractional allocation Y that

Pareto-dominates it, i.e., satisfies vi(Yi) ≥ vi(Xi) for all agents i ∈N and at least one inequality

is strict. An integral allocation A is Pareto optimal if there is no integral allocation B that

Pareto-dominates it.

Note that Definition 5 defines one ex-ante property (ex-ante fPO) and two ex-post properties

(ex-post fPO and ex-post PO). For fractional allocations, fPO is traditionally just referred to as

Pareto optimality, so we will slightly abuse terminology by using fPO and PO interchangeably to

describe the ex-ante property. However, for integral allocations, fPO is stronger than PO (Barman

et al. 2018) so it is important to distinguish between the two in the ex-post sense.

Proposition 1. If a randomized allocation is ex-ante fractionally Pareto optimal, then it is also

ex-post fractionally Pareto optimal.

Proof. If a randomized allocation X := {(pk,Ak)}k∈[ℓ] implementing a fractional allocation X

is not ex-post fPO, then for some k ∈ [ℓ], the integral allocation Ak must be Pareto dominated

by a fractional allocation, say Y . Then, the fractional allocation X ′ := pk · Y +
∑

r∈[ℓ]\{k} p
r ·Ar

Pareto-dominates X, which implies that X is not ex-ante fPO. □

We can also consider a weak version of efficiency that is based on the SD-relation. It requires

that there should not exist an alternative allocation that is a Pareto improvement for all additive

valuation functions of the agents consistent with (≿i)i∈N .

Definition 6 (SD-efficiency and Weak SD-efficiency; Bogomolnaia and Moulin 2001).

An allocation X is SD-efficient if there is no fractional allocation Y such that Yi ≿SD
i Xi for all

i∈N and Yi ≻SD
i Xi for some i∈N . Additionally, we say that X is weakly SD-efficient if there is

no fractional allocation Y such that Yi ≻SD
i Xi for all i∈N .

SD-efficiency is also referred to as ordinal efficiency in the literature. Figure 1 illustrates the

relations between fairness and efficiency concepts.
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3. The PS-Lottery Algorithm

This section describes our main result that ex-ante envy-freeness can be achieved in conjunction

with ex-post envy-freeness up to one good.

A natural approach towards this question is to start with the round-robin method. Under this

method, we fix an agent ordering, and then agents take turns picking one good at a time in a cyclic

fashion. At each step, an agent picks their most valuable good that is still available. It is well known

that for any agent ordering, this method produces an integral allocation that is EF1 (Caragiannis

et al. 2019). Further, it is easy to see that uniformly randomizing the agent ordering — the so-

called randomized round-robin method — also achieves a relaxation of ex-ante envy-freeness called

ex-ante proportionality.

Definition 7 (Proportionality (Prop); Steinhaus 1948). An allocation X is propor-

tional if for every agent i∈N , we have vi(Xi)≥ 1
n
· vi(M).

However, it can be shown that the randomized round-robin method could fail to achieve ex-

ante envy-freeness; this follows from the observation of Bogomolnaia and Moulin (2001) that the

random priority rule (which is randomized round-robin when the number of agents n is equal to

the number of goods m) is not ex-ante envy-free.

Instead of starting from a method that guarantees ex-post EF1 and using it to achieve ex-ante

EF, let us do the opposite: Start from a fractional EF allocation and implement it using integral

EF1 allocations. Probabilistic serial is a well-studied algorithm that produces a fractional envy-free

allocation (Bogomolnaia and Moulin 2001, Kojima 2009). The algorithm starts with all agents

simultaneously eating one of their respective favorite goods at the same constant speed. (Ties

between goods can be broken arbitrarily within the algorithm.) Once a good is completely consumed

by a subset of agents, each of those agents proceeds to eating one of their favorite available goods

at the same speed. The algorithm terminates when all goods have been eaten, and the fraction of

each good consumed by an agent is allocated to her. A useful property of this algorithm is that it

only uses the ordinal preferences of agents over goods, and computes an allocation that is ex-ante
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envy-free for any additive utilities consistent with the ordinal preferences; thus, it is SD-envy-free.

Although described as a continuous rule where agents eat infinitesimal amounts, the PS outcome

can be computed by a discrete algorithm in polynomial time O(nm) (Kojima 2009).

The challenge that we address here is to find an implementation of the probabilistic serial

allocation that additionally satisfies ex-post EF1. We do this using an algorithm that we refer to

as the PS-Lottery Algorithm, which only uses the underlying ordinal preferences of the agents.

We will make use of the following classic theorem (Birkhoff 1946, von Neumann 1953, Johnson et

al. 1960, Plummer and Lovász 1986). A square matrix is called bistochastic if its entries are non-

negative and each of its rows and columns sum to 1; a bistochastic matrix is called a permutation

matrix if its entries are in {0,1}.

Theorem 1 (Birkhoff-von Neumann). Let X be a p × p bistochastic matrix. There exists

an algorithm that runs in O(p4.5) time and computes a decomposition X =
∑q

k=1 λ
k · Ak, where

q≤ p2− p+2; for each k ∈ [q], λk ∈ [0,1] and Ak is a p× p permutation matrix; and
∑q

k=1 λ
k = 1.

We are now in a position to present the PS-Lottery algorithm (Algorithm 1). The high-level

description of the algorithm is as follows. We first add some dummy goods (which every agent

prefers less than any real good) to ensure that there are exactly nc goods. The expanded set of goods

is called M ′. Next, we simulate PS with this expanded set of goods M ′. Note that the algorithm

runs for exactly c units of time since each agent eats exactly one unit of good per unit time. This

produces a fractional allocation which is an n× (cn) matrix. In order to apply Theorem 1, we need

to convert it into a square bistochastic matrix. For this, we track how much of each good each

agent ate at each integral unit of time [t−1, t], t∈ [c], while running PS. While agents eat one unit

of good for each unit of time, note that this unit may consist of smaller fractions of several different

goods. Then, we create a new set of agents N ′ = {i1, . . . , ic : i∈N}, where agents i1, . . . , ic represent

agent i. We allocate the one unit of good eaten by agent i during time step [t− 1, t], t∈ [c], to the

representative agent it. This produces a fractional allocation Y given by an (nc)× (nc) bistochastic

matrix. We invoke Theorem 1 to decompose it into a convex combination of permutation matrices
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(in which each representative agent receives a single good). The permutation matrices are then

modified by removing the dummy goods and combining the allocations to all representative agents

{i1, . . . , ic} back into an allocation to the agent i that they represent, for each i ∈N . The convex

combination over the modified permutation matrices gives us the desired solution, which is both

ex-ante EF and ex-post EF1.

Algorithm 1 PS-Lottery Algorithm

Input: I = (N,M,≿) where |N |= n, |M |=m.

Output: EF fractional allocation X =
∑K

k=1 λ
kAk where each Ak represents a deterministic EF1

allocation and K ≤ (m+n)2− 2(m+n)+ 2.

1: c←⌈m/n⌉.

2: If m is a multiple of n, D= ∅. Else, D= {d1, . . . , dnc−m}.

3: M ′←M ∪D so that |M ′|= cn.

4: Set the preference profile ≿′ of agents in N over goods in M ′ as follows: for all o, o′ ∈M and

for all i ∈N , o≿′
i o

′ if o≿i o
′. For all o ∈M and d ∈D, o≻′

i d. The preferences between pairs

of dummy goods can be arbitrary. //see the forthcoming paragraph on ‘‘Additionally

Achieving Efficiency’’ for how tie-breaking can impact efficiency

5: Run PS on the instance (N,M ′,≿′) to get a fractional allocation X ′.

6: N ′←{i1, . . . , ic : i∈N}. Agents i1, . . . , ic are termed representatives of agent i.

7: Construct a fractional allocation Y of goods in M ′ to agents in N ′, where, for each i∈N and

t∈ [c], the goods eaten by agent i during time interval [t−1, t] are allocated to its representative

agent it. Note that Y is a (cn)× (cn) bistochastic matrix.

8: Invoke Theorem 1 to compute a decomposition Y =
∑K

k=1 λ
kBk where K ≤ (cn)2− 2cn+2.

9: Convert Y =
∑K

k=1 λ
kBk into X =

∑K

k=1 λ
kAk where all the dummy goods are ignored and each

agent gets the allocation of its representatives.

10: return Allocation X for instance I and its decomposition
∑K

k=1 λ
kAk.
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Lemma 1. Fix an integral allocation Bk from Line 8 of Algorithm 1 and let t, t′ ∈ [c]. Let gti

denote the good allocated to representative agent it in Bk. Then agent i (weakly) prefers gti to gt
′
i′

for any i′ ∈N and t′ > t (that is, agent i weakly prefers the good allocated to its representative for

time t to the good allocated to any representative of any agent for any time later than t).

Proof. Suppose, for contradiction, that there exists an i′ ∈N and t′ > t such that gt
′
i′ ≻i g

t
i . By

Theorem 1, representative agent it must have eaten a non-zero share of good gti . That is, agent i

must have eaten a non-zero share of good gti in time period [t−1, t]. Similarly, representative agent

i′t′ must have eaten a non-zero share of good gt
′
i′ (in particular, agent i′ eats a non-zero share of

good gt
′
i′ in time period [t′− 1, t′]), and thus gt

′
i′ was not fully consumed at time t. However, since

gt
′
i′ ≻i g

t
i , agent i should have fully consumed gt

′
i′ before consuming gti , a contradiction. □

Lemma 2. Every integral allocation returned by Algorithm 1 is envy-free up to one good.

Proof. Fix an integral allocation Ak from the output of Algorithm 1. For any i∈ [n] and t∈ [c],

let gti denote the good received by representative agent it in Bk (if such a good exists). Fix a pair

of agents i, j ∈N . By Lemma 1, for every t∈ [c], we have vi(g
t
i)≥ vi(g

t+1
j ). Hence,

vi(Ai)≥
c−1∑
t=1

vi(g
t
i)≥

c∑
t=2

vi(g
t
j) = vi(Aj \ {g1j}),

which establishes EF1. □

Theorem 2. The randomized allocation implemented by Algorithm 1 is ex-ante envy-free and

ex-post envy-free up to one good.

Proof. The ex-post EF1 guarantee follows readily from Lemma 2. Ex-ante EF follows from

the fact that the fractional allocation X returned by the algorithm is equivalent to the fractional

allocation returned by PS, thus inheriting its ex-ante properties, including envy-freeness. The

equivalence can be seen by noting that X is computed by taking the PS allocation X ′ (that includes

dummy goods), distributing the goods allocated to agent i among its representative agents, and

then recombining those goods back into a single bundle Xi =X ′
i \D. □
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Remark 1. Note that the PS-Lottery algorithm only uses the ordinal information. Therefore,

its envy-freeness guarantees imply the same properties for all cardinal utilities consistent with the

ordinal preferences. Hence, it returns an ex-ante SD-envy-free and ex-post SD-EF1 outcome.

Remark 2. The running time of Algorithm 1 is O((m+n)
4.5
). The running time is dominated

by the invocation of Theorem 1 on a p× p matrix, where p= cn≤m+ n, which takes O(p4.5) =

O((m+n)
4.5
) time. The other operations such as computing an outcome of PS and transforming

matrices take at most O(nm) time.

Remark 3. Algorithm 1 is a combinatorial algorithm that computes a lottery over at most

(m+n)
2
deterministic allocations. By Carathéodory’s Theorem, any n×m fractional allocation

that is represented by a convex combination of some K deterministic allocations can be represented

by a convex combination of at most nm+1 deterministic allocations among those K deterministic

allocations. We can reduce the support of the lottery returned by Algorithm 1 to one involving

at most nm+ 1 deterministic SD-EF1 and SD-efficient allocations as follows. By using Gaussian

elimination, we compute the subset of the set of matrices {A1, . . . ,AK} that forms the basis of

A1, . . . ,AK . We can then compute a convex combination of the matrices in the basis to achieve the

same fractional allocation X.

We note that whereas the PS-Lottery algorithm provides a way to implement PS by EF1 alloca-

tions, not every implementation of the PS outcome may satisfy ex-post EF1. For example, consider

the case of two agents with identical preferences over two goods. In that case, tossing a coin and

then giving both goods to one agent is ex-ante equivalent to the PS outcome. However, it is not

EF1 if agents have strictly positive utilities for both goods.

Next, we present a simple example showing how our algorithm works.

Example 2. Consider the instance in Example 1 in which N = {1,2}, M = {g1, g2, g3, g4}. Sup-

pose the valuations are as follows:
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Goods

g1 g2 g3 g4

Agents
1: 60 25 10 5

2: 90 3 5 2

The ordinal preferences of the agents over the goods are as follows. v1(g1) > v1(g2) > v1(g3) >

v1(g4) and v2(g1)> v2(g3)> v2(g2)> v2(g4).

If we run the PS algorithm, we get the following outcome:

X ′ =


g1 g2 g3 g4

1 1/2 1 0 1/2

2 1/2 0 1 1/2

.
It can be checked that X ′ is SD-envy-free. Since m is a multiple of n, D = ∅ and hence M ′ =

M ∪D=M . We now show how to achieve our desired lottery to achieve the PS outcome. We run

the PS rule on (N,M ′,≿′) to get allocation X. Then, for each agent’s bundle, we let successive

representative agents eat exactly one unit of goods one by one to get the following allocation, where

ij denotes the j-th representative agent of i.

Y =



g1 g2 g3 g4

11
1/2 1/2 0 0

21
1/2 0 1/2 0

12 0 1/2 0 1/2

22 0 0 1/2 1/2


BvN
=

1

2
·



g1 g2 g3 g4

11 1 0 0 0

21 0 0 1 0

12 0 1 0 0

22 0 0 0 1


+

1

2
·



g1 g2 g3 g4

11 0 1 0 0

21 1 0 0 0

12 0 0 0 1

22 0 0 1 0


.

Translating these for our original instance we get the following decomposition over EF1 alloca-

tions.

X =
1

2
·


g1 g2 g3 g4

1 1 1 0 0

2 0 0 1 1

+
1

2
·


g1 g2 g3 g4

1 0 1 0 1

2 1 0 1 0

.
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Additionally Achieving Efficiency

Since the outcome returned by Algorithm 1 is a lottery implementation of the PS rule, our algorithm

inherits all the ex-ante properties that the PS rule satisfies. When there are ties in the agents’

preferences, it is known that PS may fail to satisfy ex-ante SD-efficiency unless the ties are handled

carefully. If we care about ex-ante SD-efficiency, then we do not artificially break any ties and can

run the extended probabilistic serial (EPS) algorithm (Katta and Sethuraman 2006). The EPS

algorithm uses the same continuous eating process as PS but, rather than breaking ties arbitrarily,

makes coordinated choices for agents to eat one of their most preferred goods, using parametric

network flows to compute the outcome. By doing so, it guarantees an outcome that is ex-ante SD-

efficient as well as ex-ante envy-free, even in the presence of ties. For m≥ n goods, the algorithm

takes time O(m3 logm).

The formal specification of our EPS-Lottery algorithm is provided as Algorithm 3 in Appendix A.

It differs from Algorithm 1 only in Step 5, where it runs the EPS algorithm rather than the PS

algorithm. The returned fractional allocation X is equivalent to the fractional allocation output

by EPS and therefore inherits SD-efficiency and envy-freeness. Additionally, the outcome can be

implemented by EF1 deterministic allocations in the same manner as for the PS-Lottery algorithm.

To see this, note that the proof of Lemma 1 relies only on the fact that at every point in time, each

agent eats (one of) their most preferred remaining goods. This property continues to hold when

we use EPS as our base algorithm instead of PS. Finally, note that the running time is unchanged

as well since the bottleneck step is to invoke Theorem 1, which takes time O((m+n)4.5).

Theorem 3. There is an algorithm that runs in time O((m+n)4.5) and computes a randomized

allocation that is ex-ante SD-envy-free, ex-ante SD-efficient and ex-post SD-EF1.

4. Impossibilities

In the previous section, we showed that ex-ante (SD-)EF, ex-post (SD-)EF1, and ex-ante SD-

efficiency can be achieved simultaneously, thus providing a compelling solution for achieving both

ex-ante and ex-post fairness in resource allocation problems. However, the SD-efficiency guarantee
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is rather weak for settings where cardinal valuation functions are available. The obvious question,

then, is whether we can achieve stronger efficiency guarantees along with ex-ante and ex-post

fairness. Let us now consider the three cardinal efficiency notions from Section 2 that are related

through the following logical implications: ex-ante fPO ⇒ ex-post fPO ⇒ ex-post PO.

We first consider adding the weakest of them: ex-post PO. Unfortunately, we were not able to

settle whether ex-ante EF (or even the weaker ex-ante Prop) is compatible with ex-post EF1 and

ex-post PO. This is the most compelling open question raised by our work and we will return to

it shortly. We can however show that strengthening ex-ante EF to ex-ante SD-EF immediately

yields an incompatibility with ex-post EF1 and ex-post PO. Therefore, any algorithm that is ex-

ante envy-free and based only on the ordinal preferences of the agents (such as those based on

probabilistic serial) will necessarily fail either ex-post EF1 or ex-post PO.

Theorem 4. There exists an instance with two agents and additive valuations in which no

randomized allocation is simultaneously ex-ante SD-envy-free, ex-post envy-free up to one good, and

ex-post Pareto optimal.

Proof. Consider the example in which N = {1,2}, M = {a, b1, b2, b3} and the agents have the

following utilities over four goods.

Goods

a b1 b2 b3

Agents
1: 7 1 1 1

2: 4 2 2 2

The three goods b1, b2, b3 are identical goods that we refer to as b goods. Ex-ante SD-EF implies

that each agent in expectation gets 1/2 of a and 1.5 units of type b goods. Our first claim is

that in any lottery implementing such an ex-ante SD-EF allocation, there is at least one ex-post

allocation in which agent 2 must get good a. This follows from the fact that agent 2 gets 1/2 of a

in expectation.
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Our second claim is that in any integral EF1 and PO allocation, agent 2 cannot get good a.

Suppose for contradiction that agent 2 gets a. Then, EF1 requires that agent 1 gets at least 2 goods

of type b. But then, agent 1 can exchange these two goods for a to obtain a Pareto improvement.

From the two claims above, it follows that for this instance, there exists no lottery over integral

EF1 and PO outcomes that implements the SD-EF random outcome. □

Let us move on and consider imposing a slightly stronger efficiency notion: ex-post fPO. We note

that integral EF1+fPO allocations are known to always exist (Barman et al. 2018). Hence, the

question of whether we can randomize over such allocations to achieve a desirable ex-ante fairness

guarantee is meaningful. However, in this case, we show that achieving ex-ante envy-freeness is

impossible along with ex-post EF1 and ex-post fPO.

Theorem 5. There exists an instance with two agents and additive valuations in which no

randomized allocation is simultaneously ex-ante envy-free, ex-post envy-free up to one good, and

ex-post fractionally Pareto optimal.

Proof. We present an instance in which the unique integral allocation satisfying EF1+fPO

violates envy-freeness. Specifically, consider an instance with two goods (g1, g2) and two agents

(1,2) whose additive valuations are as follows.

Goods

g1 g2

Agents
1: 1 2

2: 1 3

This instance has exactly two integral EF1 allocations: A := ({g1},{g2}) and B := ({g2},{g1}).

It is easy to check that B is not fPO, since it is Pareto dominated by a fractional allocation

X that assigns g1 completely to agent 1, and splits g2 equally between the two agents. Indeed,

v1(X1) = v1(g1)+ 0.5 · v1(g2) = 2≥ v1(B1) and v2(X2) = 0.5 · v2(g2) = 1.5> v2(B2). To see why A is
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fPO, notice that it assigns each good to an agent that has the highest valuation for it. Therefore,

A maximizes the utilitarian social welfare (i.e., sum of agents’ utilities), which implies that it is

fPO. So, any randomized allocation that is ex-post EF1+fPO must be supported entirely on the

integral allocation A. However, A violates envy-freeness since v1(A1) = v1(g1) < v1(g2) = v1(A2).

Therefore, the randomized allocation is not ex-ante envy-free. □

Note that in the proof of Theorem 5, not only does allocation A violate envy-freeness, but it

also violates the weaker property of proportionality. Therefore, Theorem 5 continues to hold even

when we replace ex-ante EF by ex-ante Prop.

We mentioned earlier that achieving ex-ante EF along with ex-post EF1+PO is an open ques-

tion. Two prominent methods for finding an integral EF1+PO allocation are the integral MNW

rule (Caragiannis et al. 2019), which maximizes the product of agents’ utilities, and the market-

based rule of Barman et al. (2018). An interesting implication of Theorem 5 is that we cannot hope

to achieve ex-ante envy-freeness (or even ex-ante proportionality) by randomizing over allocations

returned by either method. The latter method is guaranteed to return an integral EF1+fPO allo-

cation, so Theorem 5 directly applies. And the MNW rule, while only guaranteed to return an

integral EF1+PO allocation, uniquely returns allocation A in the example presented in the proof

of Theorem 5, which violates proportionality (and therefore envy-freeness).

Finally, when we consider the strongest efficiency property of ex-ante fPO we find that it is

incompatible with ex-ante SD-EF even without imposing an ex-post fairness guarantee. The theo-

rem follows directly from Theorem 5 of Aziz and Ye (2014) but we re-prove it in our context for

the sake of completeness.

Theorem 6. There exists an instance with two agents and additive valuations in which no ran-

domized allocation is simultaneously ex-ante SD-envy-free and ex-ante fractionally Pareto optimal.

Proof. Consider the same instance as in the proof of Theorem 5, with two goods (g1, g2) and

two agents (1,2) whose additive valuations are: v1(g1) = 1, v1(g2) = 2 and v2(g1) = 1, v2(g2) = 3.

Since both agents prefer g2 to g1, the only allocation X satisfying SD-EF is the one that allocates
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each agent half of each good, with v1(X) = 1.5 and v2(X) = 2. However, this allocation is Pareto

dominated by the allocation Y that allocates g1 and one third of g2 to agent 1, and allocates two

thirds of g2 to agent 2, with v1(Y ) = 5/3> v1(X) and v2(Y ) = 2= v2(X). □

5. The MNW-Lottery Algorithm

Given the impossibilities in the previous section, together with the difficulty of achieving ex-ante EF

and ex-post EF1+PO using known techniques, it is evident that achieving any efficiency property

stronger than SD-efficiency requires relaxing at least one of the fairness guarantees. In this section,

we focus on relaxing ex-post EF1. There are two prominent relaxations that have been proposed

in the literature — namely, Prop1 and EF1
1.

Proportionality up to one good requires that an agent be able to achieve their proportional share

by adding a single good to their bundle.

Definition 8 (Proportionality Up To One Good (Prop1); Conitzer et al. 2017).

An integral allocation A is proportional up to one good if for every agent i ∈ N , either

vi(Ai)≥ vi(M)/n or there exists a good g /∈Ai such that vi(Ai ∪{g})≥ vi(M)/n.

The next property, called envy-freeness up to one good more-and-less (EF1
1) (Barman and Krish-

namurthy 2019), is a relaxation of EF1 and enjoys strong algorithmic support in conjunction with

PO (Barman and Krishnamurthy 2019). It allows a good to be removed from the envied agent’s

bundle, and a (possibly different) good to be added to the envying agent’s.

Definition 9 (Envy-Freeness Up To One Good More-and-Less (EF1
1)). An integral

allocation A is envy-free up to one good more-and-less if for every pair of agents i, j ∈N such that

Aj ̸= ∅, we have vi(Ai ∪{gi})≥ vi(Aj \ {gj}) for some goods gi /∈Ai and gj ∈Aj.

Note that Prop1 and EF1
1 are incomparable in general, in the sense that allocations satisfying

one property may not satisfy the other.

We show that both of these can be achieved simultaneously, and in fact, this can be done while

also achieving one of the strongest ex-ante properties called ex-ante group fairness. Group fairness

simultaneously strengthens various properties including envy-freeness and Pareto optimality by
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offering fairness guarantees to groups of arbitrary size and composition. Given any set S ⊆ N

of agents, we write ∪i∈SXi to denote the union of the fractional allocations to agents in S, i.e.,

∪i∈SXi := (
∑

i∈S Xi,g)g∈M .

Definition 10 (Group Fairness (GF); Conitzer et al. 2019). An allocation X is group

fair if for all non-empty subsets of agents S,T ⊆N , there is no fractional allocation Y of ∪i∈TXi

to the agents in S such that |S|
|T | · vi(Yi)≥ vi(Xi) for all agents i ∈ S and at least one inequality is

strict.

Note that imposing the above constraint over restricted (S,T ) pairs can recover properties such

as proportionality (|S|= 1, T =N), envy-freeness (|S|= |T |= 1), and fractional Pareto optimality

(S = T =N). Since group fairness implies envy-freeness, it is clear that it may not be possible to

achieve ex-post group fairness, so we will only focus on ex-ante group fairness. Ex-ante GF not only

implies ex-ante envy-freeness, but also ex-ante fPO, which, by Proposition 1, implies ex-post fPO

for any implementation of it. In other words, our goal is to implement a fractional GF allocation

using integral Prop1+EF1
1 allocations.

Before we explain how we achieve the properties defined above, we define an important fractional

allocation rule that will be central to the study in this section.

Definition 11 (Fractional Maximum Nash Welfare Rule). Given an instance I ∈ I,

the fractional Maximum Nash Welfare (MNW) rule returns all fractional allocations that maximize

the product of agents’ utilities, i.e., MNW(I) := argmaxX∈X Πi∈N vi(Xi). We refer to an allocation

A∈MNW(I) as a fractional MNW allocation.

It is known that any fractional MNW allocation satisfies group fairness (Conitzer et al. 2019).

Further, we know that a fractional MNW allocation can be computed in strongly polynomial

time (Orlin 2010, Végh 2016). Hence, we ask whether a fractional MNW allocation can be imple-

mented using integral Prop1+ EF1
1 allocations. Our starting point is a result by Budish et al. (2013)

that allows implementing any fractional allocation using integral allocations that are very “close”

to it in agent utilities. Specifically, they prove the next result deriving and using an extension of

the Birkhoff-von Neumann theorem (Theorem 1).
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Proposition 2 (Utility Guarantee; Theorem 9 of Budish et al. (2013)). Given any

fractional allocation X, one can compute, in strongly polynomial time, a randomized allocation

implementing X whose support consists of integral allocations A1, . . . ,AK such that for every

k ∈ [K] and every agent i∈N ,

|vi(Xi)− vi(A
k
i )| ≤max{vi(g)− vi(g

′) : 0<Xi,g,Xi,g′ < 1}

Notice that the upper bound established in Proposition 2 on how much agent i’s utility under

an integral allocation Ak in the support can differ from their utility under the fractional allocation

X depends only on their own fractional allocation Xi. In contrast, the fairness guarantees we want

to establish for the integral allocations in the support — Prop1 and EF1
1 — consider what happens

when we add a good to the bundle of agent i that agent i is not already allocated in the integral

allocation Ak
i ; in other words, we need a stronger guarantee for integral allocations in the support

which depends on which goods the agent is (or is not) allocated ex-post.

It turns out that the method proposed by Budish et al. (2013) already provides such a guarantee,

and their proof can be adapted to establish a more nuanced bound. Specifically, we show that if

the agent’s ex-ante utility vi(Xi) exceeds their ex-post utility vi(A
k
i ), then the gap is at most the

maximum value the agent has for any good that they lost in the integral allocation (i.e., any good

g such that 0<Xi,g < 1 and Ak
i,g = 0). Similarly, if the ex-post utility exceeds the ex-ante utility,

then the gap is at most the maximum value the agent has for any good that they gained in the

integral allocation (i.e., any good g such that 0<Xi,g < 1 and Ak
i,g = 1). We later show that this

subtle improvement helps us establish the desired ex-post fairness guarantees.

Lemma 3 (Utility Guarantee++). Given a fractional allocation X, one can compute, in

strongly polynomial time, a randomized allocation implementing X whose support consists of inte-

gral allocations A1, . . . ,AK such that for every k ∈ [K] and every agent i∈N , the following hold:

1. If vi(A
k
i )< vi(Xi), then ∃g−i /∈Ak

i with Xi,g−i
> 0 such that vi(A

k
i )+ vi(g

−
i )> vi(Xi).

2. If vi(A
k
i )> vi(Xi), then ∃g+i ∈Ak

i with Xi,g+i
< 1 such that vi(A

k
i )− vi(g

+
i )< vi(Xi).
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The proof of Lemma 3 is presented in Section B.2.

We now show how Lemma 3 can be used to achieve our desired ex-post fairness guarantees of

Prop1 and EF1
1. Our overall approach is summarized as Algorithm 2 and is referred to as the

MNW-Lottery algorithm.

Algorithm 2 MNW-Lottery Algorithm

Input: I = (N,M,v).

Output: Fractional allocation X =
∑K

k=1 λ
kAk where each Ak represents an integral allocation.

1: X←− Fractional MNW allocation (using an algorithm of Orlin (2010) or Végh (2016).)

2: For any i ∈N and any k ∈ [m], let Qi,k :=
∑k

t=1Xi,gi,t be the total fractional amount of the k

most preferred goods assigned to agent i under X.

3: Consider the following set of bihierarchical constraints on a generic fractional allocation Y :

H1 : ⌊Qi,k⌋ ≤
k∑

t=1

Yi,gi,t ≤ ⌈Qi,k⌉, ∀i∈N and ∀k ∈ [m],

H2 :
∑
i∈N

Yi,g = 1, ∀g ∈M.

(1)

4: Use the Algorithm of Budish et al. (2013) (specified in their Appendix B) to find the random-

ized allocation
∑K

k=1 λ
kAk implementing the fractional allocation X that satisfies the same

constraints as (1).

5: return Allocation X for instance I and its decomposition
∑K

k=1 λ
kAk.

Theorem 7. There is a strongly polynomial-time algorithm that, given any fractional propor-

tional allocation as input, computes an implementation of it using integral allocations that are

proportional up to one good. If, in addition, the input is a fractional MNW allocation, then the

integral allocations in the support also satisfy envy-freeness up to one good more-and-less.

Proof. LetX be a fractional allocation, and let A1, . . . ,AK be integral allocations in the support

of an implementation of X produced by Lemma 3.
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Suppose X satisfies proportionality. We want to show that for each k ∈ [K], Ak is Prop1. Since

X is proportional, for every i ∈ N , vi(Xi) ≥ vi(M)/n. Fix k ∈ [K]. By Lemma 3, we have that

for every agent i ∈N , either vi(A
k
i )≥ vi(Xi)≥ vi(M)/n, or there exists a good g /∈ Ak

i such that

vi(A
k
i )+ vi(g)> vi(Xi)≥ vi(M)/n. Therefore, Ak is Prop1.

Next, suppose that X maximizes the Nash social welfare among all fractional allocations. Since

a fractional MNW allocation is certainly proportional (Varian 1974), the aforementioned argument

still applies for ex-post Prop1. We show that in this case, Ak is also EF1
1 for each k ∈ [K]. Note

that since X is a fractional MNW allocation, the following condition is satisfied for any pair of

agents i, j ∈N and any good g ∈M (the condition that transferring an arbitrarily small fraction

of good g from agent i to agent j does not increase Nash welfare reduces to this condition):

Xi,g > 0 =⇒ vi(g)

vi(Xi)
≥ vj(g)

vj(Xj)
. (2)

Fix a pair of distinct agents i, j ∈N . By Lemma 3, either vi(A
k
i )≤ vi(Xi), or there exists g

+
i ∈Ak

i

with Xi,g+i
< 1 such that vi(A

k
i \ {g+i })< vi(Xi). Similarly, either vj(A

k
j )≥ vj(Xj), or there exists

g−j /∈Ak
j with Xj,g−j

> 0 such that vj(A
k
j ∪ {g−j })> vj(Xj). To simplify the analysis, let us assume

that the second condition holds in both cases. (If vi(A
k
i ) ≤ vi(Xi) (or vj(A

k
j ) ≥ vj(Xj)), we can

treat g+i (or g−j ) as a dummy good with vi(g
+
i ) = 0 (or vj(g

−
j ) = 0).)

By summing the right-hand side inequality in Equation (2) over all g ∈Ak
i \ {g+i }, we get

vj(A
k
i \ {g+i })

vj(Xj)
≤ vi(A

k
i \ {g+i })
vi(Xi)

< 1.

Thus, vj(A
k
i \ {g+i })< vj(Xj)< vj(A

k
j ∪{g−j }), implying that Ak satisfies EF1

1, as desired. □

Remark 4. Notice that the proof of Theorem 7 establishes a stronger version of Prop1 wherein

an agent not receiving their proportional share gets strictly more than their proportional share

by receiving one additional good. Similarly, it also establishes a stronger version of EF1
1 wherein

an agent envying another agent would strictly prefer their own allocation over the other agent’s

allocation after adding one missing good to their bundle and removing one good from the other

agent’s bundle.
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Barman and Krishnamurthy (2019) recently established that integral Prop1+EF1
1+fPO allo-

cations exist and can be computed in strongly polynomial time. They rely on special-purpose

techniques for rounding a fractional MNW allocation. By constrast, Theorem 7 uses a standard

technique to round a fractional MNW allocation, computes not just one integral Prop1+EF1
1+fPO

allocation but rather an implementation of the fractional MNW allocation over such integral allo-

cations, and can be applied to any fractional Prop+PO allocation to implement it using integral

Prop1+fPO allocations. Recall that since a fractional MNW allocation is Pareto optimal, any

allocation in the support of an implementation of it must be fPO by Proposition 1.

In addition to guaranteeing EF1
1 integral allocations in Theorem 7, the fractional MNW allocation

is known to be group fair. This observation, along with the fact that a fractional MNW allocation

can be computed in strongly polynomial time (Orlin 2010, Végh 2016), and Theorem 7 immediately

yield the main result of this section.

Theorem 8. There exists a randomized allocation that is ex-ante group fair, ex-post proportional

up to one good, and ex-post envy-free up to one good more-and-less. Further, it can be computed

in strongly polynomial time.

Example 3. Consider again the instance in Example 1 in which N = {1,2}, M = {g1, g2, g3, g4},

and the valuations of the agents for the goods are as follows.

Goods

g1 g2 g3 g4

Agents
1: 60 25 10 5

2: 90 3 5 2

The unique fractional MNW allocation is:

X =


g1 g2 g3 g4

1
1
6

1 1 1

2
5
6

0 0 0

.
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The unique randomized implementation of fractional allocation X (and, in particular, the ran-

domized allocation output by the algorithm of Budish et al. (2013)) is:

X =
1

6
·


g1 g2 g3 g4

1 1 1 1 1

2 0 0 0 0

+
5

6
·


g1 g2 g3 g4

1 0 1 1 1

2 1 0 0 0

.
Note that both integral allocations in the decomposition of X satisfy Prop1 and EF1

1.

6. Discussion

We consider the question of how well fairness and efficiency can be satisfied from ex-post and ex-

ante perspectives simultaneously. While we have focused on the case of allocating goods to agents,

an interesting extension is the case where we instead have a set of negatively valued bads to allocate

(for example, chores to family members or committee assignments to department faculty). With

appropriately generalized definitions, all our results continue to hold for the bads setting.

We note that our Algorithms 1 and 2 output a distribution over integral allocations rather than

simply producing a sample. While a sample may be sufficient for making an allocation, it has a key

limitation: it is impossible for a participant to audit the ex-ante properties of the distribution. On

the other hand, from a transparency perspective, publishing a distribution allows ex-ante properties

to be verified, as long as participants trust the mechanism by which a random sample is chosen.

Perhaps the most fascinating open question that stems from our work is whether ex-ante envy-

freeness (or even ex-ante proportionality) is compatible with ex-post EF1 and ex-post PO.

Open Question: Does there always exist a randomized allocation that is ex-ante EF, ex-post EF1,

and ex-post PO? What about ex-ante Prop, ex-post EF1, and ex-post PO?

The difficulty in approaching this question is that there are very few available methods of finding

integral EF1+PO allocations (Caragiannis et al. 2019, Barman et al. 2018), so finding many such

allocations and randomizing over them is tricky. Also, unlike the set of integral EF1 allocations,

which we somewhat understand, not much is known about the set of integral EF1+PO allocations

other than the fact that it is always non-empty.
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Various other open problems remain. For instance, other fairness concepts such as envy-

freeness up to any good (EFX) (Caragiannis et al. 2019) or approximate maximin share fairness

(MMS) (Budish 2011) can be considered. Future work can also consider the price of fairness: what

fraction of the optimal social welfare must be sacrificed (in the worst case) in order to guarantee a

fair allocation? Bertsimas et al. (2011) and Caragiannis et al. (2012) study the price of EF, while

Bei et al. (2021) and Barman et al. (2020) study the price of EF1 for indivisible goods. What is

the price of achieving both ex-ante EF and ex-post EF1 together?

More broadly, the next step would be to achieve ex-ante and ex-post fairness guarantees simul-

taneously in a variety of other problems such as voting, matching, and public decision-making.
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Appendix

A. The EPS-Lottery Algorithm

Algorithm 3 EPS-Lottery Algorithm

Input: I = (N,M,≿) where |N |= n, |M |=m.

Output: EF fractional allocation X =
∑K

k=1 λ
kAk where each Ak represents a deterministic EF1

allocation and K ≤ (m+n)2− 2(m+n)+ 2.

1: c←⌈m/n⌉.

2: If m is a multiple of n, D= ∅. Else, D= {d1, . . . , dnc−m}.

3: M ′←M ∪D so that |M ′|= cn.

4: Set the preference profile ≿′ of agents in N over goods in M ′ as follows: for all o, o′ ∈M and

for all i ∈N , o≿′
i o

′ if o≿i o
′. For all o ∈M and d ∈D, o≻′

i d. The preferences between pairs

of dummy goods can be arbitrary.

5: Run EPS on the instance (N,M ′,≿′) to get a fractional allocation X ′.

6: N ′←{i1, . . . , ic : i∈N}. Agents i1, . . . ic are termed as representatives of agent i.

7: Construct a fractional allocation Y of goods in M ′ to agents in N ′, where, for each i∈N and

t∈ [c], the goods eaten by agent i during time interval [t−1, t] are allocated to its representative

agent it. Note that Y is a (cn)× (cn) bistochastic matrix.

8: Invoke Theorem 1 to compute a decomposition Y =
∑K

k=1 λ
kBk where K ≤ (cn)2− 2cn+2.

9: Convert Y =
∑K

k=1 λ
kBk into X =

∑K

k=1 λ
kAk where all the dummy goods are ignored and each

agent gets the allocation of its representatives.

10: return Allocation X for instance I and its decomposition
∑K

k=1 λ
kAk.

B. Omitted Material from Section 5

B.1. Decomposition result of Budish et al. (2013)

Let X be a fractional allocation. Recall that X satisfies column-wise feasibility constraints, namely 0 ≤∑
i∈N Xi,r ≤ 1 for all r ∈ M . More generally, we can impose capacity constraints of the form q

S
≤
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∑
(i,r)∈S Xi,r ≤ qS , where S is a constraint set comprising of a collection of agent-object pairs, and q

S
and

qS are the lower and upper quotas for S, respectively. The set of all capacity constraints imposed by a given

problem is called the constraint structure H of the problem, and is specified as a collection of all constraint

sets and the corresponding quotas (q
S
, qS)S∈H. Given a constraint structure H, we say that the fractional

allocation X admits a feasible implementation X := {(pk,Ak)}k∈[ℓ] if every integral allocation in its support

also satisfies the constraints in H. That is, for every k ∈ [ℓ], we have

q
S
≤
∑

(i,r)∈S Ak
i,r ≤ qS for every S ∈H.

Definition 12 (Hierarchy and bihierarchy). A constraint structure H is said to be a hierarchy (or

a laminar family) if for every S,S′ ∈H, we have that either S ⊂ S′, or S′ ⊂ S, or S ∩S′ = ∅. We say that H

is a bihierarchy if it can be partitioned into two hierarchies, i.e., if there exist hierarchies H1 and H2 such

that H=H1 ∪H2 and H1 ∩H2 = ∅.

As an example, consider the fractional allocation X in Figure 2. The row constraints (shown as red or

blue solid rectangles) as well as all singleton constraints of the form 0≤Xi,r ≤ 1 (not shown in the figure)

together constitute a hierarchy, say H1, since for any pair of constraint sets, either they are disjoint or one is

completely contained inside the other. Similarly, the column constraints (shown as gray dotted rectangles)

form another hierarchy H2. Furthermore, H :=H1 ∪H2 is a bihierarchy since any constraint set (rectangle

or singleton) belongs to exactly one of H1 or H2.

0.6 0.4 0.4 0.6

0.4 0.6 0.6 0.4




X

= 0.4

1 0 1 0

0 1 0 1




A1

+ 0.2

1 0 0 1

0 1 1 0




A2

+ 0.4

0 1 0 1

1 0 1 0




A3

Figure 2 Decomposition of a fractional proportional allocation X into integral Prop1 allocations A1, A2, and

A3. The underlying fair division instance comprises of four goods and two agents with valuations v1(1) = 10,

v1(2) = 6, v1(3) = 4, v1(4) = 2 and v2(1) = 2, v2(2) = 10, v2(3) = 6, v2(4) = 4.

Budish et al. (2013) showed that bihierarchy constraint structure is a sufficient condition for a fractional

allocation to admit a feasible implementation. We recall this result in Proposition 3.

Proposition 3 (Budish et al. 2013). Given a fractional allocation X satisfying a bihierarchy con-

straint structure H, one can compute, in strongly polynomial time, a set of coefficients p1, . . . , pℓ ∈ [0,1] and
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integral allocations A1, . . . ,Aℓ such that (a)
∑ℓ

k=1 p
k = 1, (b) each Ak satisfies the constraints in H, and (c)

X =
∑ℓ

k=1 p
kAk.

Observe that the well-known Birkhoff-von Neumann theorem is a special case of Proposition 3 when H1

consists of all singleton as well as row constraints, H2 consists of all column constraints. The lower and upper

quotas for the singleton constraints are 0 and 1, respectively, while those for the row and column constraints

are 1 and 1. It is worth pointing out that while Budish et al. (2013) only note a polynomial running time,

it is easy to check that their (combinatorial) algorithm, in fact, runs in strongly polynomial time.

Budish et al. (2013) use Proposition 3 to establish the utility guarantee (Proposition 2).

B.2. Proof of Lemma 3

Recall the statement of Lemma 3.

Lemma 3 (Utility Guarantee++). Given a fractional allocation X, one can compute, in strongly

polynomial time, a randomized allocation implementing X whose support consists of integral allocations

A1, . . . ,AK such that for every k ∈ [K] and every agent i∈N , the following hold:

1. If vi(A
k
i )< vi(Xi), then ∃g−i /∈Ak

i with Xi,g−
i
> 0 such that vi(A

k
i )+ vi(g

−
i )> vi(Xi).

2. If vi(A
k
i )> vi(Xi), then ∃g+i ∈Ak

i with Xi,g+
i
< 1 such that vi(A

k
i )− vi(g

+
i )< vi(Xi).

Proof. In their proof of Proposition 2, Budish et al. (2013) propose the following method for computing

an implementation of a given fractional allocation X. Consider a fixed agent i ∈N . Suppose the goods in

M are indexed as gi,1, . . . , gi,m so that vi(gi,k)≥ vi(gi,k+1) for each k ∈ [m− 1]. For simplicity, we will write

vi(k) := vi(gi,k) for all k ∈ [m] and vi(m+1) := 0.

For any i ∈N and any k ∈ [m], define Qi,k :=
∑k

t=1Xi,gi,t
as the total fractional amount of the k most

preferred goods assigned to agent i under X. Consider the following set of constraints on a generic fractional

allocation Y (for simplicity, we omit the singleton constraints defining a valid allocation, 0 ≤ Yi,g ≤ 1 for

all i ∈ N and g ∈M , although they can be included in either hierarchy without violating the hierarchy

structure):

H1 : ⌊Qi,k⌋ ≤
k∑

t=1

Yi,gi,t
≤ ⌈Qi,k⌉, ∀i∈N and ∀k ∈ [m],

H2 :
∑
i∈N

Yi,g = 1, ∀g ∈M.

(3)

For illustrative purposes, note that the solid red and blue rectangles in Figure 2 correspond to H1 and the

dotted gray rectangles correspond to H2. Observe that X trivially satisfies these constraints. Budish et al.



Aziz et al.: Ex-Ante and Ex-Post Fairness in Resource Allocation 37

show that these constraints have the so-called “bihierarchy” structure (refer to Section B.1 for a formal

definition), which allows computing, in strongly polynomial time, an implementation of X whose support

consists of integral allocations A1, . . . ,Aℓ that also satisfy these constraints.

Lastly, Budish et al. show that any integral allocation satisfying the constraints in Equation (3) must

satisfy the guarantee in Proposition 2. We show that it in fact satisfies the slightly stronger guarantee that

we seek. For simplicity, let us write Â to denote a generic integral allocation satisfying the constraints in

Equation (3), and Q̂i,k :=
∑k

t=1 Âi,gi,t
for all i∈N and k ∈ [m].

Let us first analyze the case where vi(Âi)< vi(Xi). Then, there must exist some good g ∈M such that

Âi,g <Xi,g. Since Âi,g ∈ {0,1} and Xi,g ∈ [0,1], this is equivalent to Âi,g = 0<Xi,g. Let k
− be the smallest

index such that Âi,g
i,k− <Xi,g

i,k− , i.e., gi,k− is agent i’s most preferred good satisfying this condition. Hence,

gi,k− /∈ Âi and Xi,g
i,k− > 0. Further, for all k < k−, we have Âi,gi,k

≥Xi,gi,k
, and, as a result, Q̂i,k ≥Qi,k.

Thus,

vi(Xi)− vi(Âi) =

m∑
k=1

vi(k) · (Xi,gi,k
− Âi,gi,k

) =

m∑
k=1

(vi(k)− vi(k+1)) · (Qi,k− Q̂i,k)

≤
m∑

k=k−

(vi(k)− vi(k+1)) · (Qi,k− Q̂i,k)<

m∑
k=k−

(vi(k)− vi(k+1)) · 1 = vi(k
−),

where the second transition is a simple algebraic exercise, the third transition holds because we noted that

Q̂i,k ≥ Qi,k for all k < k−, and the fourth transition holds because Â satisfies H1 in Equation (3), and

therefore, we have that Qi,k−Q̂i,k ≤Qi,k−⌊Qi,k⌋< 1. Taking g−i := gi,k− , we notice that this is the guarantee

we desire when vi(Âi)< vi(Xi).

Next, consider the other case where vi(Âi)> vi(Xi). Then, there must exist some good g ∈M such that

Âi,g > Xi,g. Note that this is equivalent to Âi,g = 1 > Xi,g. Let k+ be the smallest index such that gi,k+

satisfies this condition. Then, we have that gi,k+ ∈ Âi, Xi,g
i,k+

< 1, and by an argument similar to the one

above, vi(Âi)− vi(Xi)< vi(k
+). Hence, in this case, we can take g+i := gi,k+ , as desired. □
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