
Crowdsourced Outcome Determination in Prediction Markets

Rupert Freeman
Duke University

rupert@cs.duke.edu
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Abstract

A prediction market is a useful means of aggregating infor-
mation about a future event. To function, the market needs a
trusted entity who will verify the true outcome in the end.
Motivated by the recent introduction of decentralized pre-
diction markets, we introduce a mechanism that allows for
the outcome to be determined by the votes of a group of ar-
biters who may themselves hold stakes in the market. Despite
the potential conflict of interest, we derive conditions under
which we can incentivize arbiters to vote truthfully by us-
ing funds raised from market fees to implement a peer pre-
diction mechanism. Finally, we investigate what parameter
values could be used in a real-world implementation of our
mechanism.

1 Introduction
Prediction markets are commonly used to elicit information
about some future event. The market operates by allowing
participants to buy and sell securities which pay off accord-
ing to the outcome of the event, and participants with an in-
formational edge are able to place profitable trades when the
market price disagrees with their own forecast. Through this
trading process, the market price can be construed as a con-
sensus forecast of the underlying event probability. Predic-
tion markets have proven effective at forecasting events in a
variety of domains, including business and politics (Spann
and Skiera 2003; Berg and Rietz 2006).

A key challenge in implementing and scaling prediction
markets is the question of outcome determination (i.e., clos-
ing markets for events). Traditional prediction markets are
centralized, in the sense that there exists a trusted center that
creates markets, oversees transactions, and closes the market
appropriately. The trusted center is a bottleneck for defining
and closing markets, limiting the scope of what can be pre-
dicted. However, there has recently been a rise of interest in
decentralized prediction markets, where any user may create
a market for an event. The markets are closed by consensus
among a group of arbiters rather than by a center.

A decentralized platform removes the requirement for a
highly trusted center, but it also allows each arbiter to di-
rectly influence the outcome of the market, in much the same
way that agents may deliberately manipulate an event due
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to their own stake in the market; this is known as outcome
manipulation (Shi, Conitzer, and Guo 2009; Berg and Ri-
etz 2006; Chakraborty and Das 2016). Additionally, by al-
lowing anyone to create a market, there is no longer any
guarantee that all questions will be sensible, or even have
a well-defined outcome. In this paper, we propose a specific
prediction market mechanism with crowdsourced outcome
determination that addresses several challenges faced by de-
centralized markets of this sort.

First is the issue of outcome ambiguity. At the time the
market closes, it might be unreasonable to assign a binary
value to the event outcome due to lack of clarity in the out-
come. In a centralized market, it may be possible to post-
pone the market closing date to allow for rare cases of am-
biguity, but it is not clear who should make such decisions
in a decentralized marketplace. Therefore, it may be more
fitting to allow outcomes to be non-binary, reflecting some
level of disagreement. Outcomes in our mechanism are de-
termined by the fraction of arbiters that report an event to
have occurred. This also guarantees that every market is
well-defined, by having traders explicitly trade on their ex-
pectations of the arbiter reports, not the actual event.

Second is the problem of peer prediction. For the credibil-
ity of the market, it is essential that arbiters are incentivized
to truthfully report their opinion as to the realized outcome.
If, for instance, we reward arbiters for agreeing with the ma-
jority opinion, then they are forced to anticipate the reports
of other arbiters, not their independent opinion. We address
this problem by making a technical change to an existing
peer prediction mechanism, the 1/prior mechanism.

Third is the inherent conflict of interest that arises by com-
bining prediction markets and peer prediction mechanisms.
Even if arbiters can be incentivized to report truthfully in
isolation, there is no way to prevent them also having a stake
in the market. An arbiter holding securities that pay off in a
particular event will be incentivized to report that the event
has occurred, even if they do not genuinely believe it to be
the case, as long as they have a chance of affecting the mar-
ket outcome. We tackle this issue by charging a trading fee
that is later used to pay the arbiters. We show that, as long
as each agent is responsible for a limited fraction of trad-
ing, and questions are clear enough, realistic trading fees can
fully subsidize truthful reporting on the part of the arbiters.



Related Work. This work is inspired by decentralized
prediction markets based on crypto-currencies, including
Truthcoin, Gnosis, and especially Augur (Peterson and Krug
2015). As in Augur, our mechanism consists of a prediction
market stage and an arbitration stage, with trading fees from
the market stage subsidizing the arbitration. The details of
the mechanisms differ in both stages, however, and Augur
includes additional layers of complexity such as a reputa-
tion system. While this complexity does provide additional
protection against attack, Peterson and Krug do not obtain
any theoretical guarantees or justification for their chosen
parameters. Clark et al. (2014) also discuss outcome deter-
mination in crypto-based prediction markets, among several
other implementation aspects.

Our work is most closely related to that of Chakraborty
and Das (2016), who consider a model where two agents
participate in a prediction market whose outcome is deter-
mined by a vote among the two agents. Our model extends
theirs by allowing an arbitrary number of traders, and not re-
quiring that all traders are arbiters. Further, we take a mech-
anism design approach, obtaining an incentive compatible
mechanism, while Chakraborty and Das focus on analyzing
the equilibrium of a simple (to play) trading-voting game,
with no peer prediction mechanism in the voting phase to
incentivize truthful voting. Recent work by Witkowski et al.
(2017) also looks at a combination of forecasting and peer
prediction, although the forecasts in their paper are elicited
via proper scoring rules, rather than prediction markets.

The work of Bacon et al. (2012) is similar in spirit to
ours, as is the literature on outcome manipulation men-
tioned previously, but in all cases the concrete setting is
quite different. We also draw heavily on existing litera-
ture in prediction markets (Hanson 2003; Chen and Pen-
nock 2007; Chen and Vaughan 2010) and peer predic-
tion (Miller, Resnick, and Zeckhauser 2005; Prelec 2004;
Witkowski and Parkes 2012); Chen and Pennock (2010) sur-
vey these topics.

2 Preliminaries
LetN be a set of agents and letA ⊂ N be a small set of dis-
tinct and verifiable arbiters. Letm = |A| denote the number
of arbiters. The agents are anonymous in the sense that one
cannot verify whether a trade is placed by an arbiter or non-
arbiter, and whether several trades are placed by the same
agent. Let X be a binary event with some realized outcome
in {0, 1}. We are interested in setting up a prediction mar-
ket for the outcome of X , with the resolution of the market
decided upon by the arbiters.

Prediction markets. We consider prediction markets im-
plemented via a Market Scoring Rule (MSR), where the
underlying scoring rule is strictly proper (Hanson 2003;
Chen and Pennock 2007). Every strictly proper MSR can
be implemented as a market maker based on a convex cost
function. Under this market structure, agents trade shares of
a security with a centralized market maker, who commits to
quoting a buy and sell price for the security at any time. The
security payout is contingent on the outcome of X . In the
usual implementation, one share of the security pays out $1

in the event that X = 1, and $0 otherwise.
Let q denote the total number of outstanding shares owned

by the agents (note that q can be negative, in the case that
more shares have been sold than bought). The market maker
charges trades according to a convex, differentiable, and
monotonically increasing function C. An agent wishing to
buy q′ − q securities pays C(q′) − C(q). Negative pay-
ments encode a transaction where securities are sold back
to the market maker. The instantaneous price of the secu-
rity is given by p = dC

dq . Because the market maker always
commits to trading, it may run a loss once the outcome is
realized and the securities pay out, but the loss is bounded.

In practice, the cost function is also tuned using a liquid-
ity parameter b, via the transformation Cb(q) ≡ bC(q/b).
A higher setting of b results in lower price responsiveness,
in the sense that the price will change less for a fixed dol-
lar trading amount. It also results in a higher worst-case
loss bound for the market maker. Unless otherwise stated,
our results assume that each agent participates in the market
only once. The mechanism and results extend to situations in
which agents can participate more than once, and we high-
light these extensions where relevant throughout the paper.

Peer prediction. Peer prediction mechanisms are de-
signed to truthfully elicit private information from a pool of
agents via a reward structure that takes advantage of infor-
mation correlation across agents. After the realization of X ,
each arbiter i receives either a positive or negative signal xi,
which we denote by xi = 1 and xi = 0 respectively. Let µ
be the prior probability that an agent receives a positive sig-
nal. Let µ1 (resp. µ0) be the probability that, given agent i
receives a positive (resp. negative) signal, another randomly
chosen agent also receives a positive signal.1 In a standard
peer prediction belief model, the quantities µ1 and µ0 can be
calculated given µ and the signal beliefs P (xi = 1|X = 1)
and P (xi = 1|X = 0); Witkowski (2014) provides an
overview. Assuming common information is not always rea-
sonable, but it is natural in our setting to assume that agents
take the closing price of the prediction market as their prior
(if not, then they can profit in expectation by participating in
the market). The probabilities µ1 and µ0 are specific to the
nature of the event X .

The peer prediction mechanism of interest in this work is
the 1/prior (“one over prior”) mechanism (Witkowski 2014;
Jurca and Faltings 2008; 2011). The 1/prior mechanism first
asks each agent for their signal report x̂i. Then, every agent
i is randomly paired with a peer agent j 6= i, and paid

u(x̂i, x̂j) =


kµ if x̂i = x̂j = 0

k(1− µ) if x̂i = x̂j = 1

0 if x̂i 6= x̂j ,

where k is some positive constant that can be freely ad-
justed to scale the payments received by the arbiters. Truth-
fully reporting x̂i = xi is an equilibrium provided that

1Our analysis will assume that µ1 and µ0 are common across
agents, but this is not a strict requirement. If we allow each agent
to have distinct updates µi

1, µ
i
0, then we can let µ1 = mini µ

i
1,

corresponding to the minimum update given x̂i = 1, and similarly
µ0 = maxi µ

i
0.



1. Market stage.
(a) A prediction market is set up for an event X using

a market scoring rule.
(b) Agents trade in the market. For a security bought

at price p, a trading fee of fp is charged, and for a
security sold at price p, a fee of f(1−p) is charged.

(c) The market closes, trading stops.

2. Arbitration stage.
(a) Each arbiter i receives a signal xi ∈ {0, 1} and

reports an outcome x̂i ∈ {0, 1}.
(b) Each arbiter i is assigned a peer arbiter j 6= i and

paid according to the 1/prior with midpoint mech-
anism.

(c) The outcome of the market, and the payoff of each
share sold, is set to the fraction of arbiters that re-
port x̂i = 1.

Figure 1: Prediction market with outcome determined using
peer prediction.

µ1 ≥ µ ≥ µ0 (Frongillo and Witkowski 2016). This is a nat-
ural condition that we will assume throughout the paper—
receiving signal xi = 1 should not decrease i’s estimate that
another agent j also receives signal x̂j = 1. We also assume
that at least one of the inequalities is strict, so that µ1 > µ0;
this condition is known as stochastic relevance. Via a simple
adaptation of the corresponding proof for the 1/prior mech-
anism, it can be shown that truthful reporting remains an
equilibrium if µ is replaced by some other constant c with
µ0 < c < µ1 in the payments; we will exploit this fact to
adapt the 1/prior mechanism for our purpose.

We call the quantity δ = µ1−µ0 the update strength. This
quantity is specific to the instance and, roughly speaking,
measures how strongly positively correlated the signals are
across arbiters. The update strength is high if, after receiving
a positive (negative) signal, an arbiter believes that another
given arbiter receives a positive (negative) signal with high
probability. For instance, if event X is “Will the Cleveland
Cavaliers win the 2016 NBA playoffs?” then we would ex-
pect δ ≈ 1, since any arbiter reaching a conclusion about
the outcome of the series (by watching it live, reading in
the news, etc.) would strongly expect any other arbiter to
reach the same conclusion. On the other hand, a question
like “Will a Presidential candidate tell a lie in the televised
debate?” is considerably more open to interpretation, and we
would expect it to have a smaller value of δ. If an arbiter be-
lieves a candidate to have lied, it is not necessarily the case
that another arbiter believes the same.

3 Mechanism
A step by step description of our mechanism is given in Fig-
ure 1. The mechanism runs a prediction market where the
outcome is determined by a vote among arbiters. The ar-
biters’ signals should be interpreted as the information they
receive regarding the outcome ofX: checking news sources,

observing events, their own opinions, etc. To ensure that
arbiters truthfully report their information, we incentivize
them via a peer prediction mechanism.2 In both stages we
implement non-standard versions of existing mechanisms,
which we detail in the following.

Market stage We make use of an MSR with non-binary
outcome. The outcome takes a value X̂ ∈ [0, 1] correspond-
ing to the fraction of arbiters that report x̂i = 1. Each share
sold pays off X̂ . Observe that this fundamentally changes
the value of a security to a market participant: in a standard
prediction market, an agent’s value for a security is his sub-
jective probability that event X occurs, while in our mar-
ket his value is the fraction of arbiters that he expects to
report x̂i = 1. However, given the agent’s valuation for a
security, his incentives in both markets are similar. A risk-
neutral, non-arbiter agent will trade shares until the market
price matches the security’s expected payoff, or the agent’s
budget is exhausted.

This change to the payoff structure has two advantages.
First, it ensures that any question has a well-defined and un-
ambiguous outcome, avoiding problems with badly worded
questions. This is important in any situation where users are
allowed to generate markets. Second, any market with a bi-
nary outcome that relies on arbitration must have a point of
‘discontinuity’, where a change in report from a single ar-
biter results in the value of a security changing by $1.3 There
will therefore always be situations where, given the reports
of the other arbiters, a single arbiter completely controls the
market outcome. If this arbiter also has a significant stake
in the market, this creates a very large incentive problem.
By utilizing non-binary outcomes, a single arbiter can only
change the value of each security by at most $1/m.

Our mechanism imposes trading fees. Theoretical mod-
els of prediction markets do not typically incorporate trad-
ing fees (an exception is the work of Othman et al. (2013),
where a fee in the form of a bid-ask spread is used to al-
low liquidity to increase over time), but they are standard
in real-world implementations. To understand how the fee is
implemented, it is important to distinguish between transac-
tions (buy or sell) where an agent increases its position (in
terms of risk), and transactions where it liquidates its posi-
tion. The trading fee that we implement can be seen as a fee
on the worst-case loss incurred by an agent: the fee is on p
when a new security is bought, and 1 − p when a security
is sold short (because it may pay out $1). However, no fee
is levied when an agent sells back a share that it holds, or
buys back a share that was previously sold short—these are
liquidation transactions.

The trading fee serves two distinct purposes in our mecha-
nism. First, it allows us to raise funds which can then be used
to pay arbiters. Even assuming that arbiters behave honestly

2Each arbiter makes his report without knowledge of the report
of any other arbiter; for instance, the reports could be made simul-
taneously.

3To see this, consider the case where all arbiters report x̂i = 1,
and flip one report at a time to x̂i = 0. One of these flips must
change the outcome from X̂ = 1 to X̂ = 0.



(in the absence of a sophisticated peer prediction mecha-
nism), they still need to be compensated for the time spent
looking up the outcome of X and reporting it to the mecha-
nism. This can, in principle, be achieved by any of a number
of fee structures.

Second, the fee provides natural bounds on the value of
any given security. Even if an event is certain to occur, with
a fee of f = 2% an agent who moves the market price to
(say) 99¢ actually pays a marginal cost of $0.99 · 1.02 >
$1 (see Lemma 2 for an exact bound). The multiplicative
fee effectively bounds the price of the security away from 0
and 1. Thus, it is impossible for an agent to buy securities
at an arbitrarily cheap price, which allows us to bound the
number of securities, and therefore maximum payout, of any
agent with a fixed budget B. We note that there are other
reasonable fee structures which do not provide such a lower
bound on the price. For example, if the agents only pay a fee
on any profit they gain from the market, then the price of an
event that is certain to happen will still converge to 1.

Arbitration stage The main challenge in our setting is to
incentivize arbiters to truthfully report their signal regard-
ing the realized value of X . In the absence of any conflict
of interest, this is a simple peer prediction problem. Since
the closing price of the market gives us a natural common
prior on the probability that a given arbiter receives sig-
nal xi = 1, it is natural to use the 1/prior mechanism. For
prior signal probability µ, the 1/prior mechanism uses the
fact that µ1 ≥ µ ≥ µ0 to guarantee that truthful report-
ing achieves higher payoff than misreporting. However, as
µ1 approaches µ, the payoff for truthfully reporting signal
x̂i = 1 approaches the payoff for misreporting x̂i = 0. In
isolation, there is still no reason to misreport, but if the ar-
biter has some stake in the market then it may be worthwhile
to incur a small misreporting loss to achieve other gains. The
following example illustrates this issue.

Example 1. Consider a prediction market for the event
“Will the Democratic presidential candidate be leading the
Republican presidential candidate in the polls at the end of
the month?” Suppose it is known that 10% of arbiters only
check conservative news sources, which always report that
the Republican candidate is ahead, and another 10% only
check liberal news sources, which always report the oppo-
site. Suppose the market closes at µ = 0.89. Consider an
arbiter j who checks a (moderate) news source and finds that
the Democratic candidate is ahead (i.e., xj = 1). Since it is
still the case that 10% of the arbiters will certainly receive
signal xi = 0, the updated belief µ1 remains no higher than
0.9. That is, the update is very small, and the expected profit
from reporting x̂j = 1 is also small. If j has bet against the
outcome (i.e., sold some securities to the market maker), it
could be in his interest to lie and report x̂j = 0.

However, if the moderate news site had reported that the
Republican candidate was leading (i.e., x̂j = 0), the up-
dated belief µ0 could be quite small, even in the range of 0.1
(since most arbiters check moderate sources). Now j has a
lot to gain from reporting x̂j = 0. Therefore, j would have
to hold a relatively large number of shares for misreporting
to outweigh the expected profit from the 1/prior mechanism.

Example 1 stems from an asymmetry in update strength,
leading to potentially different incentives for arbiters de-
pending on which signal they receive. We modify the mech-
anism, making the update strength symmetric. Given that
we know the updated beliefs µ1 and µ0, we can pay ar-
biters according to the 1/prior mechanism but use the value
(µ1 + µ0)/2 instead of the prior, µ. We call this the 1/prior
with midpoint mechanism. Using the midpoint guarantees
that the incentives for arbiters are the same regardless of the
signal they receive. For the arbiter with the greatest incen-
tive to misreport, using the 1/prior with midpoint mecha-
nism (weakly) decreases his incentive to misreport over the
standard 1/prior mechanism, allowing us to achieve better
bounds in our worst-case analysis.

Analysis
In this section, we derive conditions for truthful reporting
(x̂i = xi) to be a best response, given that all other arbiters
report truthfully. The main restriction we require is an upper
bound B on the total budget any given arbiter spends in the
market—without such a bound, an arbiter could have an ar-
bitrarily large incentive to manipulate the market’s outcome.
Thus, B appears as a parameter in our analysis.

Arguably, an arbiter confident in their ability to manip-
ulate a market outcome could procure enough funds as to
have a very large budget, especially relative to a small mar-
ket. However, in current decentralized prediction markets,
each arbiter arbitrates only a small fraction of markets. As
long as the assignment of arbiters to markets is done after
the market closes, there is no way for manipulators to tar-
get a specific market. For this reason, we believe that ma-
nipulations are most likely to be of a form where arbiters
participate honestly in the first stage, but, if they happen to
be assigned to arbitrate a market that they also participated
in, may be able to gain by not reporting truthfully, rather
than arbiters mounting deliberate high-budget attacks in the
market stage. Of course, our analysis is not specific to that
particular interpretation, but we do consider it a compelling
argument in favor of using a budget bound in our analysis.

Intuitively, we need to scale the payments made to ar-
biters in the arbitration stage by a sufficiently large k so that
the increased payoff for truthful reporting in this stage over-
whelms the gains from manipulating the outcome.

Lemma 1. Let ni be the number of securities held by arbiter
i. Then truthfully reporting x̂i = xi is a best response for
arbiter i, given that all other arbiters report truthfully, if
and only if

k ≥ 2|ni|
mδ

.

Proof. We prove the case where ni > 0; the case for ni < 0
is symmetric. The total payoff for arbiter i is the sum of
the payoffs from the market phase and the arbitration phase.
Fixing the reports of the other arbiters, the market payout
for i is higher when i reports x̂i = 1. And, in expectation,
the payoff for i in the arbitration phase is higher for truthful
reporting than for lying. Thus, the only problematic case is
when xi = 0, but i may wish to report x̂i = 1.



So suppose that xi = 0. The expected payoff for truth-
fully reporting x̂i = 0, assuming all other arbiters truthfully
report their signal, is

niµ0
m− 1

m
+ (1− µ0)k

µ0 + µ1

2
. (1)

Here µ0(m−1) is the expected number of arbiters that report
signal 1, and therefore niµ0(m−1)/m is i’s expected payoff
from the market, while the remaining term is 1 − µ0, the
probability of i’s peer agent also reporting 0, multiplied by
the payment i receives in this case. On the other hand, the
expected payoff for misreporting x̂i = 1 is

ni

(
µ0
m− 1

m
+

1

m

)
+ µ0 k

(
1− µ0 + µ1

2

)
, (2)

where the extra 1/m in the first term is due to the additional
market payoff from i reporting x̂i = 1, and the latter term is
now the probability of i’s peer agent reporting 1, multiplied
by the payoff i receives when this happens.

We require that the expected payoff for reporting x̂i = 1
be at most the expected payoff for truthfully reporting x̂i =
0. Setting term (2) to be at most term (1) and simplifying
yields the result.

This characterization requires an upper bound on the number
of securities that any single agent owns. In itself this is an
unsatisfying restriction; however, we can think about it in
terms of the size of the fee, f , and the amount of money that
any single arbiter spends in the market, B. For fixed fee f ,
let q− and q+ be the number of outstanding securities such
that the market prices are p(q−) = f/(1 + f) and p(q+) =
1/(1+ f) respectively. Note that these quantities depend on
the liquidity parameter b used in the cost function.
Lemma 2. For fixed percentage fee f , the number of out-
standing securities lies in the interval [q−, q+].

Proof. Suppose that some agent sells a security when there
are already q− outstanding. Then the marginal price is ex-
actly f/(1 + f). When selling a security at this price, the
agent receives f/(1 + f) from the mechanism but must pay
a trading fee of

f

(
1− f

1 + f

)
=

f

1 + f
.

Thus the agent’s net revenue from the sale is 0 (and the pos-
sibility remains that he must pay the mechanism in the event
that X occurs). Therefore no agent makes such a sale, and
the number of outstanding securities never drops below q−.

A similar argument shows that q never exceeds q+. To buy
a security when there are already q+ outstanding, an agent
must pay a price of at least $1, when the fee is included.

Lemma 2 provides us with the minimum and maximum
number of outstanding securities at any time. As a corol-
lary, we can derive the maximum number of securities that a
single agent with budget B is able to purchase or short sell.
We interpret the budget as an upper bound on the worst-case
loss that the agent is able to incur. When buying a security
for price p, the worst-case loss is p, under outcome X = 0.

When selling a security for price p, the worst-case loss is
1 − p, under outcome X = 1. Let φ−b (B) = C−1b (B +

Cb(q
+))− q+ and φ+b (B) = C−1b (B + Cb(q

−))− q−.
Corollary 1. At the end of the market stage, an agent i with
budget B holds ni ∈ [φ−b (B), φ+b (B)] securities.
The proof, along with all other omitted proofs, can be found
in the full version of the paper. An interesting special case
is the limit as b → ∞. This corresponds to the market hav-
ing zero price responsiveness, meaning that all securities are
purchased at a fixed price. Conceptually, it is equivalent to
the situation where agents participate in the market more
than once. In that setting, an agent could wait until the mar-
ket price reaches f

1+f , buy a small number of securities, then
wait again until the price drops. An agent spending all their
budget in this way can, in the extreme case, buy as if the
market has infinite liquidity.
Corollary 2. For an agent that spends at most B dollars in
a market with trading fee f and infinite liquidity, ni lies in
the range

[
−B(1+f)

f , B(1+f)
f

]
.

If every agent has budget at most B in the market stage,
we can combine the bounds from Corollaries 1 and 2 and
Lemma 1 to determine the minimum payment that guaran-
tees truthful reporting in the arbitration phase.
Theorem 1. Given that all other arbiters report truthfully,
truthful reporting is a best response for arbiter i if

k ≥
2max{|φ−b (B)|, |φ+b (B)|}

mδ
.

In the case that agents may participate in the market many
times, truthful reporting requires that

k ≥ 2B(1 + f)

fmδ
.

Therefore, fixing an agent budget B and a trading fee f , we
know how large one needs to make the payments in the ar-
bitration phase in order to incentivize truthful reporting. We
now take a global view, and examine the total funds required
to incentivize all arbiters to report truthfully.
Lemma 3. The total payment made to the arbiters is at most
mk. We can implement a truthful equilibrium with total pay-
ment at most

2max{|φ−b (B)|, |φ+b (B)|}
δ

.

In the case that agents may participate in the market many
times, we require total payment at most

2B(1 + f)

fδ
.

Proof. As 0 ≤ µ0, µ1 ≤ 1, their mean also lies between
0 and 1, and therefore each arbiter’s payment in the 1/prior
with midpoint mechanism is at most k. Thus the total pay-
ment to the arbiters is at most mk, which proves the first
part. Combining this with the bounds on k from Theorem 1
yields the second part.



(a) Multiple entry case. (b) Single entry case.

Figure 2: Minimum fee f required to adequately incentivize arbiters, plotted as a function of B
M . In both cases, M = 106 is

fixed. Relationships are shown for selected values of update strength δ and, in the right-hand plot, liquidity b.

Now that we have an expression for the total amount needed
to pay the arbiters, we can determine a suitable value for
the fee f so that the mechanism does not need any outside
subsidy to finance these payments. Let ci denote the total
cost paid by agent i to the mechanism (so ci is negative if
agent i sells securities). Define M by

M =
∑

i:ni>0

ci +
∑

i:ni<0

(ni + ci).

M can be interpreted as the sum of the worst-case losses
of the agents. By definition, the total fee revenue collected
by the mechanism is fM . The mechanism is guaranteed to
generate enough fees to incentivize truthful reporting if the
revenue is at least as large as the total payment required for
the arbiters. We state this result as a theorem.

Theorem 2. The mechanism generates enough fee revenue
to pay the arbiters without requiring any outside subsidy if

fM ≥
2max{|φ−b (B)|, |φ+b (B)|}

δ
. (3)

If agents may participate in the market many times, then we
require that

fM ≥ 2B(1 + f)

fδ
. (4)

Observe that inequality (4) aligns with intuition. An increase
in total trader spend M , or the trading fee f , makes it easier
to incentivize the arbiters to report truthfully since the mar-
ket collects more revenue. Likewise, an increase in δ helps
us satisfy the inequality, since a large update strength in-
creases the incentive for arbiters to report truthfully to the
peer prediction mechanism. However, a large value of B in-
creases the stake that any single arbiter can have in the mar-
ket, which in turn increases their payoff for misreporting.

An interesting feature of inequalities (3) and (4) is the lack
of any dependence on the number of arbiters m. One might
expect that increasing the number of arbiters would be ben-
eficial, since this reduces the influence that any one of them
has on the market outcome. However, this is canceled out
by the fact that as we add arbiters, the payment per arbiter
decreases, so that we cannot incentivize them as strongly.

4 Parameter Calibration
In this section we investigate the constraints imposed by in-
equalities (3) and (4). The purpose of the exercise is to il-
lustrate how Theorem 2 can be used to inform the choice
of fee f , and to confirm that realistic fees could be charged
in practice to subsidize truthful arbitration. We consider the
logarithmic market scoring rule (LMSR), which is the most
common MSR used in practice. For the LMSR, the cost and
price functions are

Cb(q) = b log(1 + eq/b), p(q) =
eq/b

1 + eq/b
.

By the symmetry of LMSR, q− = −q+ and φ−b (B) =

−φ+b (B). We will therefore solve for φ+b (B). To find q−,
we set p(q) = f/(1 + f) and solve for q, which gives
q− = b log f . Now, substituting the relevant components
into the expression φ+b (B) = C−1b (B+Cb(q

−))− q− leads
to the following expression for inequality (3):

fM ≥ 2b(log((1 + f)eB/b − 1)− log f)

δ
. (5)

In the case where we allow agents to participate multiple
times, inequality (4) remains unchanged.

We plot (3) and (4) in Figure 2, considering their tight
versions as equalities. First consider Figure 2a, which repre-
sents the worst-case scenario in which agents can enter mul-
tiple times and potentially spend their entire budget buying
securities at minimum price p−. Suppose that some entity is
creating a prediction market for eventX . Having decided on
a question, the main decision is what value to set for f , typ-
ically in the 2-5% range. To do so, the market creator needs
to first estimate a value for δ, which will be determined by
question clarity, whether the arbiters have reliable sources to
check the outcome, and other such factors. Each line in the
graph represents a specific value of δ. With δ fixed, the mar-
ket creator can estimate a value for B

M . This is the maximum
proportion of money that any single arbiter will contribute
to the market. We would expect B

M to be small for markets
that generate a lot of interest, while niche markets would
be vulnerable to having a single agent contribute a large per-
centage of the total trade. Given these values, the creator can
arrive at the smallest f that is guaranteed to subsidize truth-
ful reporting. From the graph, we see that in the case of a



question where δ = 1 and B
M = 0.001, we can subsidize

the arbiter payment with a fee of approximately 4%. This
may seem large for a clear question with high participation,
but we stress that this fee is based on a severe worst case
where an agent is able to spend its entire budget purchasing
securities at the minimum price.

Now consider Figure 2b, which returns to the case where
an agent only enters once, where liquidity now plays a role
and we have to consider different values for parameter b.
Figure 2b includes two reasonable values for b, as well as
three different values for δ. We note that the situation looks
considerably better for the market creator; indeed, the hor-
izontal axis is now ten times larger indicating that we can
now handle much smaller markets. When δ = 1, we can han-
dle situations where a single agent can contribute as much
as 2% of the total trade with a fee of less than 5%. Even for
questions with δ as low as 0.3, in a market with b = 1000
and B

M = 0.005 the fee can be set to approximately 5%.

5 Conclusion
This paper proposed and analyzed a mechanism where the
outcome of an MSR prediction market is determined via
a peer prediction mechanism among a set of arbiters. The
mechanism relies on two key adaptations to incentivize
truthful arbitration: market shares pay out according to the
proportion of arbiters who vote affirmatively, instead of a bi-
nary payout, and peer prediction payments are based on the
midpoint of the two possible posteriors, rather than the prior.
We showed that, with this combination of adaptations, it is
possible to charge a trading fee that fully subsidizes truthful
arbitration. Calibration based on plausible values of question
clarity and trading volume suggests that realistic fees of 5%
should be sufficient in practice.

While we have derived conditions under which truthful
reporting is an equilibrium, there remains the possibility of
the arbiters reporting according to uninformative equilib-
ria that achieve higher payoff. This problem has recently
been addressed in the peer prediction literature in situations
where reporters complete several tasks instead of just one
(Dasgupta and Ghosh 2013; Shnayder et al. 2016); it may
be worthwhile to apply these techniques to our setting. In
practice, arbiters vote on many questions across time, which
opens the possibility of using a reputation system to incen-
tivize them to vote truthfully and accurately (Peterson and
Krug 2015). The interplay of the incentives from all these
mechanisms is fertile ground for future research.
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