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Abstract
We introduce a new model for two-sided match-
ing which allows us to borrow popular fairness no-
tions from the fair division literature such as envy-
freeness up to one good and maximin share guar-
antee. In our model, each agent is matched to mul-
tiple agents on the other side over whom she has
additive preferences. We demand fairness for each
side separately, giving rise to notions such as dou-
ble envy-freeness up to one match (DEF1) and dou-
ble maximin share guarantee (DMMS). We show
that (a slight strengthening of) DEF1 cannot always
be achieved, but in the special case where both
sides have identical preferences, the round-robin al-
gorithm with a carefully designed agent ordering
achieves it. In contrast, DMMS cannot be achieved
even when both sides have identical preferences.

1 Introduction
Consider a group of agents seeking to divide some number
of indivisible goods amongst themselves. Each agent has a
utility function describing the value that they have for every
possible bundle of goods, and each agent may have a differ-
ent utility function. This is a canonical resource allocation
problem that arises in estate division, partnership dissolution,
and charitable donations, to name just a few. A central goal
is to find an allocation of the goods that is fair.

One desirable notion of fairness is envy-freeness [Foley,
1967], which requires that no agent prefer another agent’s
allocation of goods to her own. This is a compelling defi-
nition but, due to the discrete nature of the problem, cannot
always be satisfied. Instead, we must consider relaxed ver-
sions, with one popular relaxation being envy-freeness up to
one good (EF1) [Lipton et al., 2004; Budish, 2011], which re-
quires that any pairwise envy can be eliminated by removing
a single good from the envied agent’s allocation. An alloca-
tion satisfying EF1 always exists for a broad class of agent
utility functions [Lipton et al., 2004].

While quite general, the resource allocation model fails
to capture some allocation settings that we might be inter-
ested in. In particular, it does not allow for the possibility
of two-sided preferences, in which agents have preferences
over “goods,” but also “goods” have preferences over agents.

For instance, when college courses are allocated to students,
it is reasonable to assume that students have preferences over
the courses they take, and that teachers in charge of courses
also have preferences over the students they accept (perhaps
measured by prerequisites or GPA).1 As another example,
consider the problem of matching social services to vulnera-
ble individuals2, where individuals have preferences over the
services they receive, and service providers have preferences
over the individuals they serve (perhaps based on demograph-
ics, location, or synergy with existing clients).

Allowing for two-sided preferences is immediately remi-
niscent of the matching literature. In two sided matching,
it is generally assumed that each agent has ordinal prefer-
ences over the other side, and a matching is sought that is
in some sense stable to individual or group deviations. It is
well-known that stability is closely related to envy-freeness in
the sense that a one-to-one matching is stable if and only if it
eliminates justified envy [Abdulkadiroğlu and Sönmez, 2003],
a requirement specifying that any envy that i may feel for j’s
match is “justified” by j’s match preferring j to i. In many-to-
one settings, the notions remain tightly connected, with a sta-
ble matching being one that eliminates justified envy and has
no waste. Justified envy-freeness has also been studied as in
its own right in the many-to-one setting [Wu and Roth, 2018;
Yokoi, 2020].

Justified envy, and therefore stability, fundamentally rely
on the idea that the less an agent is preferred by the other side,
the lower her own entitlement should be. However, in some
applications, it may be desirable to provide equal entitlements
or moral claims to agents regardless of how valued they are
by the agents on the other side. For example, instructors may
prefer students with high GPA over students with low GPA,
but it is not clear that universities should adopt such a pol-
icy in their course scheduling (and, in fact, usually do not).
Therefore, while stability is a valuable notion in many set-
tings, in this work we consider two-sided preferences while
incorporating traditional notions from fair division.

Our contributions. We introduce and study a two-sided
resource allocation setting in which we have two groups of

1Assigning students to courses has been studied before [Budish,
2011; Othman et al., 2010; Budish and Cantillon, 2012], but these
papers typically only consider the preferences of the students.
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agents, where each agent has preferences over agents on the
other side. Each agent must be “matched” to a subset of
agents on the other side, subject to a maximum degree con-
straint. Our goal is to find a many-to-many matching that
provides fairness to both sets of agents simultaneously. The
standard resource allocation setting is a special case of our
model in which each good can be matched to at most one
agent, each agent can be matched to any number of goods,
and goods are indifferent to which agent they are assigned to.

As a natural tradeoff between expressiveness and succinct-
ness, we restrict our attention to additive preferences, in
which the utility for being matched to a group of agents is
equal to the sum of utilities for being matched to each agent
in the group individually. While conceptually simple, addi-
tive preferences have led to a rich body of work in fair divi-
sion. We focus primarily on the case in which all agents on
the same side have the same degree constraint, and the total
maximum degree on both sides is equal. In this case, it is
reasonable to seek a complete matching, which saturates the
degree constraints of all the agents on both sides.

We begin by considering double envy-freeness up to one
match (DEF1), requiring that EF1 hold for both sets of agents
simultaneously. We show that a complete matching satisfying
(a slight strengthening of) DEF1 does not always exists, but
in the special case where both sides have identical ordinal
preferences, it exists and can be computed efficiently using a
carefully designed round robin algorithm.

We also ask whether it is possible to find matchings that
satisfy double maximin share guarantee (DMMS), a two-
sided version of the maximin share guarantee. Even when
both sides have identical preferences, a complete DMMS
matching may not exist, in contrast to the one-sided setting in
which an MMS allocation is guaranteed to exist when agents
have identical preferences. In general, we show that approx-
imate DMMS and approximate DEF1 are incompatible, al-
though in the special case where the degree constraint is equal
to two we can achieve exact versions of both simultaneously.

Related work. Most related to our work is that of Patro
et al. [2020], who draw on the resource allocation literature
to guarantee fairness for both producers and consumers on a
two-sided platform. However, in their model, producers are
indifferent between the customers; thus, only one side has
interesting preferences. Other work [Sühr et al., 2019] has
focused on guaranteeing fairness in two-sided platforms over
time, rather than in a one-shot setting. Of particular note is
the work of Gollapudi et al. [2020], who consider two-sided
EF1 in a dynamic setting, but obtain positive results primar-
ily for symmetric binary valuations, a much more restrictive
class of valuations than we consider. Tadenuma [2011] stud-
ies envy minimization in two-sided matching subject to other
notions, including stability, but focuses on ordinal notions of
envy and restricts attention to one-to-one matchings.

The theories of matching and fair division each have a
rich history. Traditional work in matching theory has fo-
cused on one-to-one or many-to-one matchings, beginning
with the seminal work of Gale and Shapley [1962] and find-
ing applications in areas such as school choice [Abdulka-
diroğlu and Sönmez, 2003; Abdulkadiroğlu et al., 2005;

Hatfield et al., 2011], kidney exchange [Saidman et al.,
2006], and the famous US resident-to-hospital match.3 We
note that EF1 as a condition becomes vacuous whenever
a set of agents has a maximum degree constraint of one,
so we focus instead on the more general case of many-to-
many matchings. This case has also been well-explored
in the matching literature [Roth, 1984; Sotomayor, 1999;
Roth and Sotomayor, 1992; Echenique and Oviedo, 2006], al-
though that literature focuses on stability notions, which have
a very different flavor to our guarantees.

Our work draws extensively on notions from the fair di-
vision literature, particularly envy-freeness and its relax-
ations [Foley, 1967; Budish, 2011; Lipton et al., 2004] and
the maximin share guarantee [Budish, 2011]. Prior work
has studied the satisfiability of these properties in the re-
source allocation setting [Caragiannis et al., 2019; Procac-
cia and Wang, 2014; Kurokawa et al., 2016], including the
house allocation setting in which each agent is “matched”
to a single item [Aigner-Horev and Segal-Halevi, 2019;
Beynier et al., 2019; Gan et al., 2019], but, to our knowl-
edge, no work has considered satisfying them on both sides
of a market simultaneously.

2 Preliminaries
For n ∈ N, define [n] = {0, . . . , n− 1}. There are two dis-
joint groups of agents, denoted N ` (“left”) and Nr (“right”),
of sizes n` and nr, respectively. For simplicity of notation,
we write N ` = [n`] and Nr = [nr]; when referring to an
agent by only its index, the group she belongs to will be clear
from context. We use indices i ∈ [n`] and j ∈ [nr] to refer to
agents on the left and right, respectively. We are given degree
constraints d`i and dri such that each i ∈ N ` and each j ∈ Nr

can be matched to at most d`i and drj agents on the opposite
side, respectively. When d`i = d`i′ for any i, i′ ∈ N ` (resp.
drj = drj′ for any j, j′ ∈ Nr), we denote by d` (resp. dr) the
common degree constraint of all agents in N ` (resp. Nr).

A (many-to-many) matching M is represented as a binary
n` × nr matrix, where M(i, j) = 1 if i ∈ N ` and j ∈ Nr

are matched, and M(i, j) = 0 otherwise. With slight abuse
of notation, we denote M `

i = {j ∈ Nr :M(i, j) = 1} and
Mr
j =

{
i ∈ N ` :M(i, j) = 1

}
as the sets of agents on the

opposite side that agents i ∈ N ` and j ∈ Nr are matched
to, respectively. We say that M is valid if it respects the
degree constraints, i.e., if |M `

i | ≤ d`i for each i ∈ N l and
|Mr

j | ≤ drj for each j ∈ Nr. Hereinafter, we omit the
term valid, but will always refer to valid matchings. We
say that M is complete if

∑
i∈N` |M `

i | =
∑
j∈Nr |Mr

j | =
min(

∑
i∈N` d`i ,

∑
j∈Nr drj). That is, a complete matching is

one in which either every agent on the left has their degree
constraint met exactly, or every agent on the right does.

Each agent i ∈ N ` has a valuation function u`i : Nr →
R≥0 and each agent j ∈ Nr has a valuation function urj :

N ` → R≥0. When agents i ∈ N ` and j ∈ Nr are matched,
they simultaneously receive utilities u`i(j) and urj(i), respec-
tively. We assume that utilities are additive. Thus, with

3https://www.nrmp.org/
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slight abuse of notation, the utilities to agents i ∈ N ` and
j ∈ Nr under matching M are u`i(M

`
i ) =

∑
j∈M`

i
u`i(j) and

urj(M
r
j ) =

∑
i∈Mr

j
urj(i), respectively.

Our main constructive results take only the agents’ prefer-
ence orders as input. For agent i ∈ N ` (resp. j ∈ Nr), we
denote by σ`i (resp. σrj ) a linear order over Nr (resp. N `)
which is consistent with the valuation function u`i (resp. urj ),
i.e., j �σ`

i
j′ whenever u`i(j) > u`i(j

′) (resp. i �σr
j
i′ when-

ever urj(i) > urj(i
′)).4 With a slight abuse of notation, we

denote with σ`i (p) (resp. σrj (p)) the position of alternative p
in σ`i (resp. σrj ).

Inspired by envy-freeness up to one good (EF1) from clas-
sical fair division [Budish, 2011; Lipton et al., 2004], we de-
fine the following fairness guarantee in our setting.
Definition 1 (Double Envy-Freeness Up To c Matches
(DEFc)). We say that matching M is envy-free up to c
matches (EFc) over N ` if for each pair of agents i, i′ ∈ N `,
there exists S` ⊆ M `

i′ with |S`| ≤ c such that u`i(M
`
i ) ≥

u`i(M
`
i′ \ S`). Similarly, we say that it is EFc over Nr if, for

each pair of agents j, j′ ∈ Nr, there exists Sr ⊆ Mr
j′ with

|Sr| ≤ c such that u`j(M
r
j ) ≥ u`j(M

r
j′ \ Sr). We say that M

is DEFc if it is EFc over both N ` and Nr.
When an algorithm takes as input only the preference rank-

ings, it must ensure that the matching it returns is DEFc
for all possible valuation functions which could have in-
duced the rankings. It is easy to observe that this is equiv-
alent to satisfying the following stronger guarantee which
uses the stochastic dominance (SD) relation.This is akin to
the SD-EF1 strengthening of EF1 [Freeman et al., 2020;
Aziz, 2020].
Definition 2 (SD Double Envy-Freeness Up To c Matches
(SD-DEFc)). We say that matching M is SD-envy-free up to
c matches (SD-EFc) over N ` if, for every t ∈ [nr],∑t

p=0M(i, σ`i (p)) ≥
∑t
p=0M(i′, σ`i (p))− c,∀i, i′ ∈ N `,

and is SD-EFc over Nr if, for every t ∈ [n`],∑t
p=0M(σrj (p), j) ≥

∑t
p=0M(σrj (p), j

′)− c, ∀j, j′ ∈ Nr.

M is called SD-DEFc if it is SD-EFc over both N ` and Nr.
Finally, we extend a different fairness notion from classical

fair division called the maximin share guarantee (MMS).
Definition 3 (α-Double Maximin Share Guarantee
(α-DMMS)). Let M denote the set of valid matchings.
The maximin share value of agent i ∈ N ` is defined as

MMS`i = maxM∈M mini′∈N` u`i(M
`
i′),

and the maximin share value of agent j ∈ Nr is defined as

MMSrj = maxM∈M minj′∈Nr urj(M
r
j′).

Given α ∈ [0, 1], matching M is called α-maximin share fair
(α-MMS) overN ` if u`i(M

`
i ) ≥ α·MMS`i for every i ∈ N `,

and α-MMS over Nr if urj(M
r
j ) ≥ α · MMSrj for every

j ∈ Nr. It is called α-DMMS if it is α-MMS for both Nr

and Nr. When α = 1, we write DMMS instead of 1-DMMS.
4Ties among agents with equal utility are broken arbitrarily.

The notions of (SD-)DEF1 and DMMS are incompara-
ble to the traditional notions of stability and justified envy-
freeness, as the following example shows.

Example 1. Suppose N ` = Nr = {0, 1, 2, 3}, the com-
mon degree requirement is 2, and each side has identical or-
dinal preference 0 � 1 � 2 � 3 over the other side. The
only matching that is stable and eliminates justified envy is
the one that matches each i ∈ {0, 1} on the left with every
j ∈ {0, 1} on the right, and each i ∈ {2, 3} on the left with
every j ∈ {2, 3} on the right. Indeed, if some i ∈ {0, 1}
on the left is not matched to some j ∈ {0, 1} on the right,
then j must be matched to some i′ ∈ {2, 3} on the left, which
would make (i, j) a blocking pair, and i would (justifiably)
envy i′ for her match with j. However, this matching vio-
lates DEF1 when, for example, agent 2 on the left has more
value for agent 1 on the right than for agents 2 and 3 on the
right combined (as this would leave her envious of agents 0
and 1 on the left, even after ignoring their match to agent 0
on the right). Note that this matching also violates DMMS,
since each agent on the left could partition those on the right
into bundles {0, 3}, {0, 3}, {1, 2}, {1, 2}, guaranteeing them-
selves a better bundle than the {2, 3} that agents 2 and 3 re-
ceive. On the other hand, any one-to-one matching satisfies
(SD-)DEF1 and DMMS, but many one-to-one matchings are
not stable or free of justified envy.

3 Double Envy-Freeness Up To One Match
In this section, we focus on double envy-freeness up to one
match, more specifically, its strengthening SD-DEF1. We be-
gin in Section 3.1 by presenting an impossibility result that
holds even under quite restrictive conditions. Then, in Sec-
tion 3.2, we present an algorithm that efficiently computes
an SD-DEF1 matching whenever both groups of agents have
identical ordinal preferences. In the full version of the pa-
per, we present an additional positive result for the case that
all agents have maximum degree constraint equal to two, and
one side has identical preferences.

3.1 SD-DEF1 Matchings May Not Exist
Our first main result says that a complete SD-DEF1 matching
may not exist. Observe that without the completeness condi-
tion an empty matching is trivially SD-DEF1.

Theorem 1. A complete SD-DEF1 matching is not guaran-
teed to exist.

The proof of Theorem 1, along with all other omitted
proofs, can be found in the full version of the paper. It uses
a counterexample in which both sides have the same number
of agents (that is, N ` = Nr = n), all agents have the same
degree constraint (d` = dr = d), and one group of agents
have identical preferences (u`i = u`i′ for all i, i′ ∈ N `). Thus,
Theorem 1 holds even in this restricted case, and continues to
hold for more general settings.

A natural question, that we leave open, is whether the
impossibility continues to hold when we relax SD-DEF1 to
DEF1. We have found no counterexamples (even for SD-
DEF1) via simulation; the counterexample for SD-DEF1 is
carefully crafted but relies on the strength of SD-DEF1.



3.2 Identical Ordinal Preferences on Both Sides
Theorem 1 says that a complete SD-DEF1 matching is not
guaranteed to exist even under quite restrictive conditions. It
is natural to ask whether there exist any settings in which a
complete SD-DEF1 matching can be guaranteed. In the full
version of the paper, we establish the existence of a complete
SD-DEF1 matching by restricting the degree bound (with still
only one side having identical preferences). In this section,
we consider a different restriction: when agents on both sides
have identical preferences, i.e., σ`i = σ`i′ for all i, i′ ∈ N ` and
σrj = σrj′ for all j, j′ ∈ Nr.

Theorem 2. When n`d` = nrdr and both groups of agents
have identical ordinal preferences, a complete SD-DEF1
matching always exists and can be computed efficiently.

The proof of Theorem 2 follows from a series of lem-
mas. In the main text we focus on the simple case for which
N ` = Nr = n and d` = dr = d. Theorem 2 follows from
progressively reducing the general case to this simple case.

We denote by σ` and σr the ordinal preferences of the
agents in N ` and Nr, respectively. Without loss of general-
ity, assume that σ` = σr = 0 � . . . � n−1. We want to find
an SD-DEF1 matching under which each agent is matched to
exactly d agents on the opposite side. A natural idea is to let
agents on one side pick agents on the other side in a round-
robin fashion. That is, we construct an orderingR over agents
on one side, and these agents take turns according to R in a
cyclic fashion with each agent, in her turn, making one match
to her most preferred agent (i.e. lowest indexed agent) on the
opposite side who has less than d matches so far. A standard
argument from classical fair division shows that regardless of
the ordering R, the resulting matching will be SD-EF1 over
over the side that does the picking.5 However, as the example
below shows, not all orderings R lead to a matching that also
satisfies SD-EF1 over the other side.

Example 2. Consider the case where n = 5 and d = 2.
Suppose the ordering R has agents on the left choose in the
order 0, 1, 2, 3, 4. Then, agent 0 on the right will be matched
to agents 0 and 1 on the left, while agent 1 on the right will
be matched to agents 2 and 3 on the left. SD-EF1 is violated
as agent 1 significantly envies agent 0 on the right side.

We now show that when R is carefully designed, SD-EF1
can also be satisfied over the other side, resulting in SD-
DEF1. Algorithm 1 takes as input parameters a ∈ [n] and
x ∈ {d, n− d}, and for any choices of these parameters, con-
structs an ordering R over the agents on (say) the left side.
Algorithm 2 then uses this ordering to run the round-robin
procedure while respecting the degree constraints. Example 3
demonstrates these algorithms.

Example 3. Consider the same instance as Example 2, with
n = 5 and d = 2. Suppose we choose a = 3 and x = d = 2.
Then the round robin ordering returned by Algorithm 1 is
R(0) = 3+0 = 3 (setting i = 0), R(1) = 3+3 = 1 (i = 3),
R(2) = 3 + 1 = 4 (i = 1), R(3) = 3 + 4 = 2 (i = 4),

5As observed by Biswas and Barman [2018], the standard round
robin algorithm is not EF1 when agents have cardinality constraints,
but EF1 is retained provided that agents have identical preferences.

Algorithm 1 Round-Robin-Ordering(n, a, x)

1: // x and n coprime, so x−1 (mod n) exists
2: for i ∈ [n] do
3: R(p) = a+ px−1 (mod n)
4: end for
5: return R

Algorithm 2 Restricted-Round-Robin-Coprime(n, d)

1: Choose a ∈ {0, . . . , n− 1} and x ∈ {d, n− d}
2: R =Round-Robin-Ordering(n, a, x)
3: // Round-robin with ordering R over agents on the left
4: M(i, j) = 0,∀i, j ∈ [n]
5: for j ∈ [n], t ∈ [d] do
6: M(R(j · d+ t (mod n)), j) = 1
7: end for
8: return M

and R(4) = 3 + 2 = 0 (i = 2), with all addition performed
mod n. That is, agents on the left choose in order 3, 1, 4, 2, 0.
This results in the matching M `

3 = {0, 2}, M `
1 = {0, 3},

M `
4 = {1, 3}, M `

2 = {1, 4}, and M `
0 = {2, 4} (equivalent

to the formula provided directly in Line 6 of Algorithm 2).
The fact that this is SD-EF1 over N ` is easy to check. Ex-
amining the matching, note that Mr

0 = {1, 3} = M `
4 , Mr

1 =
{2, 4} = M `

0 , Mr
2 = {0, 3} = M `

4 , Mr
3 = {1, 4} = M `

2 ,
and Mr

4 = {0, 2} = M `
3 . That is, the matchings received by

agents on the right are the same as those received by agents
on the left, up to a cyclic shift. For this matching, SD-EF1
over N ` immediately implies SD-EF1 over Nr.

The next result shows that for any choices of the param-
eters, the resulting matching is SD-DEF1. The idea of the
proof is to show that the structure in Example 3 holds in gen-
eral: for any allowed choice of (a, x), the set of bundles re-
ceived by agents on the right is the same as the set of bundles
received by agents on the left, thus inheriting SD-EF1 from
the fact that the matching is constructed by agents on the left
choosing in round robin sequence.
Lemma 1. When n` = nr = n and d` = dr = d are co-
prime and both groups of agents have identical ordinal pref-
erences, Algorithm 2 efficiently computes a complete SD-
DEF1 matching.

Proof. To avoid the (mod n) notation in this proof, we
will treat integers as belonging to the ring Z/nZ of integers
modulo n. Thus, addition, multiplication, and multiplica-
tive inverses will be modulo n. Note that x−1 exists because
x ∈ {d, n− d} = {d,−d} is coprime with n.

We claim that the ordering R constructed in Algorithm 1
is a valid ordering over the agents in N `. Notice that because
x ∈ {d,−d} is coprime with n, (p · x−1)i∈[n] = [n]. Thus,
each position in the ordering R is mapped to exactly one
agent. Because agents on the left take d turns in a cyclic fash-
ion, it is convenient to think of an extended ordering R which
is the original R concatenated with itself d times: one can
check that this still obeys R(p) = a+ px−1 for all p ∈ [nd].

Next, we argue that the matching returned is a valid com-
plete matching. Notice that during the round-robin, d agents



on the left that are consecutive in the ordering pick a given
agent on the right before moving on to the next lowest in-
dexed agent on the right. Further, each agent on the left gets
d turns. Hence, it is easy to see that every agent is matched to
exactly d agents on the opposite side.

As mentioned earlier, the fact that the returned matchingM
is SD-EF1 over N ` follows directly from the standard round-
robin argument in classical fair division: given any pair of
agents i, i′ ∈ N `, if we ignored the first turn taken by i′, then
in each round agent i would get a turn before agent i′ does,
and hence, would not envy agent i′ in the SD sense. It remains
to show that M is also SD-EF1 over Nr. We show that for
each agent j ∈ Nr, there exists an agent i ∈ N ` such that
Mr
j = M `

i . SD-EF1 over Nr will then follow from SD-EF1
over N ` given that σ` = σr.

Let us focus on agent j ∈ Nr. Because agents on the right
are picked from lowest-indexed to highest-indexed, agent j is
picked by the d agents from N ` who appear consecutively in
the (extended) ordering R at indices jd+ t for t ∈ [d]. Given
that R(p) = a+ px−1 for all p ∈ [nd], we immediately have
Mr
j =

{
a+ (jd+ t)x−1 : t = [d]

}
.

Next, let us focus on agent i ∈ N `. If she is matched
to some agent j ∈ Nr in a particular turn, then from the
observation above, it must be that i = a + (jd + t)x−1

for some t ∈ [d]. Solving this for j, we get that j =
((i − a)x − t)d−1. Varying t ∈ [d] in this equation gets
us the d agents on the right that agent i is matched to:
M `
i =

{
((i− a)x− t)d−1 : t = [d]

}
.

To show that for each j ∈ Nr, there exists i ∈ N ` with
M `
i =Mr

j , we take two cases.
If x = n − d = −d, then x−1 = (−d)−1 = −d−1. In

this case, it is easy to check that taking i = j suffices as
Mr
j =M `

j =
{
a− j − td−1 : t = [d]

}
.

If x = d, then Mr
j =

{
j + a+ td−1 : t = [d]

}
, while

M `
i =

{
i− a− td−1 : t = [d]

}
=
{
i− a− (d− 1− t)d−1 : t = [d]

}
.

Notice that Mr
j coincides with M `

j+2a−d−1+1.

Algorithm 2 executes round-robin with the left side taking
turns, and allows freely choosing a ∈ [n] and x ∈ {d, n− d}
to decide their ordering. Note that if the right side takes
turns instead, the algorithm still produces a complete SD-
DEF1 matching. However, this extension does not find any
new matchings. When x = n − d, the matching produced
is symmetric (M `

i = Mr
i for all i ∈ [n]), and thus the same

regardless of which side takes turns. When x = d, the allo-
cations on one side are cyclic shift of the allocations on the
other side. Hence, any matching produced by the right side
taking turns can also be produced by the left side taking turns
with appropriately chosen (a, x).

What about allowing choices of x other than just d and
n − d? At least for n = 7, d = 3, and a = 0, it is easy
to check by hand that no other choices of x produce an SD-
DEF1 matching. On the other hand, could it be that some of
the 2n choices of (a, x) are redundant and lead to the same
matching as other choices? The following result shows that
in every instance, all 2n choices lead to different matchings.

Proposition 1. For any inputs n and d to Algorithm 2, the 2n
possible choices of (a, x) result in distinct matchings.

Given Proposition 1, one may be tempted to conjecture that
these 2n choices generate all complete SD-DEF1 matchings.
However, in the full version of the paper, we show that this is
not the case, leaving open the question of characterizing the
set of all complete SD-DEF1 matchings.

The proof of Theorem 2 continues by reducing the case
where n and d are not coprime to the coprime case. Letting
g = gcd(n, d), we divide both sides into g sub-groups of
n′ = n/g agents each. Then, we run Algorithm 2 a total
of g2 times to match agents from each sub-group on the left
to d′ = d/g agents from each sub-group on the right. This
matches each agent with exactly d agents from the opposite
side. Note that we allow each of the g2 calls to Algorithm 2 to
use arbitrary choices of a and x. Nonetheless, we show that
the resulting complete matching must be SD-DEF1.
Lemma 2. When n` = nr = n, d` = dr = d, and both
groups of agents have identical ordinal preferences, a com-
plete SD-DEF1 matching always exists and can be computed
efficiently.

Finally, we turn our attention to the general case in which
we drop the constraints n` = nr and d`i = drj = d. We do
however require that n` · d` = nr · dr. The proof of Theo-
rem 2, which appears in the full version of the paper, uses a
trick of adding dummy agents to the side with fewer agents,
computing an SD-DEF1 matching as per Lemma 2, and then
removing the dummy agents. The key is to show that the re-
moval of dummy agents reduces the degrees of the agents on
the opposite side exactly as intended and SD-DEF1 is pre-
served.

We note that it is possible to extend our constructive result
slightly beyond the case of n` · d` = nr · dr. Without loss
of generality, assume that n` · d` < nr · dr. First, note that
in this case, no matching is complete. We can still make the
degree of each agent on the left equal to d`, but the best we
can hope for is that the degrees of agents on the right differ
by at most 1, i.e., they are either

⌊
n`·d`/nr

⌋
or
⌈
n`·d`/nr

⌉
.6 In

this case, the trick outlined in Theorem 2 only works when
the dummy agents are added to the left side, i.e., if n` ≤ nr.
We conjecture that such an SD-DEF1 matching always exists
even when n` > nr, but leave it as an open question.

4 Double Maximin Share Guarantee
In this section, we focus first on the existence of DMMS
matchings, and second on the existence of matchings that are
DMMS and SD-DEF1 concurrently.

We begin by considering the case where agents on both
sides have identical preferences, i.e., u`i(j) = u`i′(j), for any
pair of agents i, i′ ∈ N `, and any j ∈ Nr, and similarly
urj(i) = urj′(i), for any pair of agents j, j′ ∈ Nr and any
i ∈ N `. We show the following negative result, which stands
in contrast to the one-sided fair division setting in which an
MMS allocation is guaranteed to exist when agents have iden-
tical preferences.

6In case that n`·d`/nr is an integer, we can set this to be dr and
achieve exactly equal degrees on the right side too.



Theorem 3. A 0.89-DMMS matching may not exist, even
when agents on both sides have identical preferences.

Proof. We denote by u` and ur the cardinal preferences of
the agents in N ` and Nr respectively. As the utilities are
the same across the agents in the same group, we can define
MMS` = MMS`i for all i ∈ [n`], and MMSr = MMSrj
for all j ∈ [nr].

Consider the instance with n = n` = nr = 7 and
d = d` = dr = 3, u`(j) = n − j − 1 for all j ∈ [n],
and ur(i) = n− i− 1 for all i ∈ [n]. Thus, for any complete
matching,

∑
i∈N` u`(M `

i ) =
∑
j∈Nr ur(M `

j ) = 63. This
means that MMS` = MMSr ≤ 9, because if all agents
receive equal utility then they each get utility 9. Next, we
construct a matchingM such that u`(M `

i ) = 9 for all i ∈ [n].
Without loss of generality, assume that M `

0 , M `
1 , and M `

2
all contain agent 0. Then, we know that agents 1 and 2 cannot
be contained in these bundles, because then they would have
value larger than 9, implying that some other agent receives
utility less than 9. Without loss of generality, we assume
that bundles M `

3 , M `
4 , and M `

5 contain agent 1. Now, we
observe that M `

6 = {2, 3, 4}, as there is no other way to have
u`(M `

6) = 9. As 0 and 2 can not belong to the same bundle
(such a bundle would be valued at least 10), we may assume
without loss of generality that agent 2 is contained inM `

3 , and
M `

4 . Then, the constraint that u`(M `
3) = u`(M `

4) = 9 dic-
tates that M `

3 = M `
4 = {1, 2, 6}. With these bundles fixed,

it is easy to check that the only M `
5 that yields u`(M `

5) = 9
is M `

5 = {1, 3, 5}. Lastly, without loss of generality, we may
assume that M `

0 = M `
1 = {0, 4, 5}, and M `

2 = {0, 3, 6}.
Hence, we conclude that the following matching is the only
one (subject to permutations of N `) that satisfies MMS for
agents on the left.

• M `
0 =M `

1 = {0, 4, 5}
• M `

2 = {0, 3, 6}
• M `

3 =M `
4 = {1, 2, 6}

• M `
5 = {1, 3, 5}

• M `
6 = {2, 3, 4}

Now, consider agents 0 ∈ Nr and 4 ∈ Nr. Both are matched
to agents 0 ∈ N ` and 1 ∈ N `, but agent 0 ∈ Nr is matched
to agent 2 ∈ N ` while agent 4 ∈ Nr is matched to agent
6 ∈ N `. Therefore, ur(Mr

0 ) 6= ur(Mr
4 ) (and this difference

persists regardless of permutations of N `). It is therefore not
the case that every agent on the right receives utility 9; in
particular, one agent receives utility 8 or less, producing the
approximation ratio α = 8/9 < 0.89.

While a DMMS matching may not exist, even when pref-
erences are identical, we can exploit the algorithms presented
in Section 3 to obtain an approximation to DMMS.

Theorem 4. When n`d` = nrdr and both groups of agents
have identical utilities, every complete SD-DEF1 matching
M is also 1

d`
-MMS over N `, and 1

dr -MMS over Nr.

We next show an almost-matching upper bound that can
be achieved by any SD-DEF1 matching, to complement The-
orem 4. In fact, we show a more general result that trades
off the approximation to DMMS with the approximation to
double envy-freeness.
Theorem 5. There exists an instance with n` = nr = n and
d` = dr = d in which no matching is simultaneously c+2

d -
DMMS and SD-DEFc for any c ∈ [d].

Finally, we show that a strong impossibility persists even if
we only require SD-EF1 on one side and MMS on the other.
Theorem 6. A matching that satisfies SD-EF1 over N ` and
MMS over Nr is not guaranteed to exist, even when agents
on both sides have identical preferences.

5 Discussion
We have introduced a model that bridges two-sided match-
ing and fair division by requiring fairness on both sides of
a matching market. We have shown that SD-EF1 can be
achieved for agents on both sides, when all agents on the left
side and all agents on the right share a common ordinal pref-
erence ranking over agents on the other side. When this con-
dition is not satisfied, there may exist no matching that satis-
fies SD-DEF1. We have also shown that there may not exist a
doubly MMS matching even when agents have identical pref-
erences. While we do not rule out a good approximation to
DMMS, we show that it is essentially impossible to obtain a
good approximation to DMMS if one also requires SD-DEF1.

It is interesting to note that the proofs of Theorems 4 and 5
do not rely on the constraints that an agent in N ` can have up
to dmatches, and can be matched with an agent inNr at most
once. Therefore, these theorems also hold in a one-sided fair
division problem where there are n agents and n/d items with
d copies each, and all the agents have identical preferences.

Many interesting avenues for future research remain. For
example, one can hope to derive weaker positive results in
the case where one side has identical preferences. When the
side with identical preferences does the picking, Algorithm 2
remains EF1 for that side. In the full version of the paper, we
conduct empirical simulations and observe that Algorithm 2
remains EF1 for some of the agents on the other side as well
(and does better than the classical round-robin algorithm in
this aspect). It would also be interesting to compare the
two-sided fair division setting with its one-sided counterpart
(where only one side has preferences and we seek fairness
only for this side). In our simulations, we observe that there
is a sharp contrast for envy-freeness (one-sided EF is almost
always achievable while two-sided DEF almost always isn’t).
For the maximin share guarantee, however, there is no con-
trast: both one-sided MMS and two-sided DMMS are almost
always achievable. Theoretically analyzing the probability
of satisfiability of these notions in random instances would
be an interesting direction for the future. One can also con-
sider two-sided versions of other fairness notions, including
those that remain interesting when the degree constraint is 1,
which could yield further interesting results in the one-to-one
or many-to-one settings. Finally, it would also be interesting
to derive positive results when each agent can have a different
degree constraint.
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