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Abstract
In fair division, equitability dictates that each partic-
ipant receives the same level of utility. In this work,
we study equitable allocations of indivisible goods
among agents with additive valuations. While prior
work has studied (approximate) equitability in iso-
lation, we consider equitability in conjunction with
other well-studied notions of fairness and economic
efficiency. We show that the Leximin algorithm pro-
duces an allocation that satisfies equitability up to
any good and Pareto optimality. We also give a
novel algorithm that guarantees Pareto optimality
and equitability up to one good in pseudopolyno-
mial time. Our experiments on real-world prefer-
ence data reveal that approximate envy-freeness, ap-
proximate equitability, and Pareto optimality can
often be achieved simultaneously.

1 Introduction
We consider fair division problems that require a central plan-
ner to divide a set of goods among a group of agents—each
with their own individual preferences over the goods—such
that the resulting allocation is fair. How exactly one can cer-
tify that an allocation is “fair” remains a subject of debate,
but the literature suggests two distinct viewpoints. In the first
viewpoint, an agent should prefer her bundle of goods to some
comparison bundle. The gold standard of fairness here is envy-
freeness, which says that each agent should prefer her bundle
of goods to any other agents’ bundle.

In this work, we consider the second viewpoint, in which
agents compare their happiness levels, or utilities. Here, an
allocation is considered fair if the planner is able to make
all agents equally well-off. A central fairness notion in this
context is equitability: An equitable allocation is one where
agents derive equal utilities from their assigned shares. Stated
differently, an equitable allocation seeks to minimize the dis-
parity between the best-off and the worst-off agents.

Both perspectives have merit, but the practical importance
of equitability as a fairness criterion has been highlighted in
an experimental study conducted by [2009]. They asked hu-
man subjects to deliberate over an assignment of indivisible
∗Contact Author

goods subject to a time limit. It was found that the chosen
outcomes were equitable (and Pareto optimal) far more often
than they were envy-free. They concluded that equitability is a
significant predictor of the perceived fairness of an allocation,
often more so than envy-freeness.

Like many other fairness notions, equitability has been
traditionally studied for divisible goods (i.e., cake-cutting).
In this setting, it is known that an equitable allocation al-
ways exists [Dubins and Spanier, 1961; Alon, 1987]. On
the computability side, it is known that no finite procedure
can find an (exact) equitable division [Procaccia and Wang,
2017], though an ε-equitable division can be computed in
a finite number of steps [Cechlárová and Pillárová, 2012a;
Cechlárová and Pillárová, 2012b].

For indivisible goods, an equitable (EQ) allocation might
fail to exist even with two agents and a single good, motivat-
ing the need for approximations. To this end, [2014] proposed
the notion of near jealousy-freeness, under which for any pair
of agents, the disparity can be reversed by removing any good
from the bundle of the agent with higher utility. We refer to
this notion as equitability up to any good (EQx) in keeping
with the nomenclature for a similar relaxation of envy-freeness
[Caragiannis et al., 2016]. We also study equitability up to one
good (EQ1), requiring only that inequity can be eliminated by
removing some good from the higher-utility-agent’s bundle.
[2014] showed that for additive valuations, an EQx (hence,
EQ1) allocation always exists and can be computed in poly-
nomial time. However, they did not study Pareto optimality
(PO), a fundamental and often desirable notion of economic
efficiency that may still be violated by an (approximately) eq-
uitable allocation.

Our work takes a deeper dive into the study of (approx-
imately) equitable allocations of indivisible goods—in con-
junction with Pareto optimality as well as other well-studied
notions of fairness (envy-freeness and its relaxations)—and
considers a host of existence and computational questions. Ta-
ble 1 provides a comprehensive summary of our results. Some
of the highlights are:

• We strengthen the aforementioned result of [2014] to
show that an EQx and PO allocation always exists
for strictly positive valuations (Proposition 3). With-
out the positivity assumption, even an EQ1+PO allo-
cation might fail to exist (Example 1), and finding
an EQ/EQx/EQ1+PO allocation becomes strongly NP-
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EQ 7 even for two agents and one good strongly NP-c even for id (Proposition 1)
EQx
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EQ 7 even for two agents and one good Poly-time for bin (Theorem 2)
EQx strongly NP-h (Remark 1) Poly-time for bin (Theorem 4)
EQ1 7 (Example 1) 3 for pos (Proposition 3) strongly NP-h (Theorem 1) Pseudopoly-time for pos (Theorem 3)

EF + PO +


EQ

7 even for two agents and one good
Poly-time for bin (Remark 3)

EQx NP-c even for bin (Remark 4)EQ1

EFx + PO +


EQ

7 even for bin (Example 1)
Poly-time for bin (Remark 3)

EQx Poly-time for bin (Theorem 4)EQ1

EF1 + PO +


EQ

7 even for pos (Proposition 4)
Poly-time for bin (Remark 3)

EQx Poly-time for bin (Theorem 4)EQ1

strongly NP-h (Corollary 1)

Table 1: Summary of results. For “Existence Results,” a 3 denotes guaranteed existence while a 7 indicates that existence might fail for some
instance. For “Computational Results,” NP-c/NP-h refers to NP-complete/NP-hard. The shorthands bin, id, and pos refer to binary, identical,
and strictly positive valuations, respectively.

hard (Theorem 1 and Remark 1).

• As a step towards making the above existence result con-
structive, we design a pseudopolynomial-time algorithm
that always returns an EQ1+PO allocation for strictly
positive valuations (Theorem 3).

• We construct an instance in which no allocation can
be EQ1+EF1+PO (Proposition 4).1 We show that deter-
mining whether such an allocation exists is, in general,
strongly NP-hard (Corollary 1), but the special case of
binary valuations is efficiently solvable (Theorem 4).

• We validate our theoretical results via experiments on the
data from the popular fair division website Spliddit2 as
well as on synthetically generated instances (Section 4).

Related Work
For divisible goods (i.e., cake-cutting), [1961] showed that an
equitable division always exists (without providing a bound
on the number of cuts). Subsequent work has established the
existence of equitable divisions where each agent gets a con-
tiguous piece [Cechlárová et al., 2013; Aumann and Dombb,
2015; Chèze, 2017].

Equitability has also been studied in combination with other
fairness and efficiency notions. It is known that there always
exists a cake division that is simultaneously equitable and
envy-free [Alon, 1987]. However, existence might fail if, in
addition, one also requires Pareto optimality [Brams et al.,
2013] or contiguous pieces [Brams et al., 2006]. Connections
between Pareto optimality and social welfare maximizing eq-
uitable divisions have also been studied [Brams et al., 2012].

For indivisible goods, in addition to the work of [2014]
discussed above, [2019] studies equitable and connected allo-
cations of indivisible goods (i.e., when the goods constitute
the vertices of a graph and a feasible allocation assigns every
agent a connected subgraph).

1EF1 stands for envy-freeness up to one good, which is a (neces-
sary) relaxation of envy-freeness defined for indivisible goods; see
Section 2 for the relevant definitions.

2http://www.spliddit.org/

2 Preliminaries
Problem instance. An instance 〈[n], [m],V〉 of the fair di-
vision problem is defined by a set of n ∈ N agents [n] =
{1, 2, . . . , n}, a set of m ∈ N goods [m] = {1, 2, . . . ,m},
and a valuation profile V = {v1, v2, . . . , vn} that specifies
the preferences of every agent i ∈ [n] over each subset of the
goods in [m] via a valuation function vi : 2

[m] → N ∪ {0}.3
We will assume that the valuation functions are additive,
i.e., for any agent i ∈ [n] and any set of goods S ⊆ [m],
vi(S) :=

∑
j∈S vi({j}), where vi(∅) = 0. For a singleton

good j ∈ [m], we will write vi,j instead of vi({j}).
Allocation. An allocation A := (A1, . . . , An) is an n-
partition of the set of goods [m], where Ai ⊆ [m] is the bundle
allocated to the agent i. Given an allocation A, the utility of
an agent i ∈ [n] for the bundle Ai is vi(Ai) =

∑
j∈Ai

vi,j .

Equitable allocations. An allocation A is said to be equi-
table (EQ) if for every pair of agents i, k ∈ [n], we have
vi(Ai) = vk(Ak). An allocation A is equitable up to
one good (EQ1) if for every pair of agents i, k ∈ [n] such
that Ak 6= ∅, there exists some good j ∈ Ak such that
vi(Ai) ≥ vk(Ak \ {j}). An allocation A is equitable up
to any good (EQx) if for every pair of agents i, k ∈ [n] such
that Ak 6= ∅ and for every good j ∈ Ak such that vk,j > 0,
we have vi(Ai) ≥ vk(Ak \ {j}).4

Envy-free allocations. An allocation A is envy-free (EF) if
for every pair of agents i, k ∈ [n], we have vi(Ai) ≥ vi(Ak).
An allocation A is envy-free up to one good (EF1) if for every
pair of agents i, k ∈ [n] such that Ak 6= ∅, there exists some
good j ∈ Ak such that vi(Ai) ≥ vi(Ak \ {j}). An allocation
A is envy-free up to any good (EFx) if for every pair of agents
i, k ∈ [n] such that Ak 6= ∅ and for every good j ∈ Ak such
that vi,j > 0, we have vi(Ai) ≥ vi(Ak \ {j}). The notions

3Integrality of valuations is required only for Theorem 3. Our
positive results (i.e., existence and algorithmic results) hold even
in the absence of this assumption, and negative results (i.e., non-
existence and hardness results) hold even for integral valuations.

4Our results hold analogously for the following variant of EQx
due to [2014]: For every pair of agents i, k ∈ [n] such that Ak 6= ∅,
vi(Ai) ≥ vk(Ak \ {j}) for every good j ∈ Ak.

http://www.spliddit.org/


of EF, EF1, and EFx are due to [1967], [2011],5 and [2016],
respectively.

Pareto optimality. An allocation A is Pareto optimal if
there is no other allocation B such that vk(Bk) ≥ vk(Ak)
for every agent k ∈ [n] with at least one of the inequalities
being strict.

Nash social welfare. Given an instance 〈[n], [m],V〉, the
Nash social welfare of an allocation A is defined as

NSW(A) :=
(∏

i∈[n] vi(Ai)
)1/n

. An allocation A∗ is called
Nash optimal or MNW (Maximum Nash Welfare) if it maxi-
mizes the Nash social welfare among all allocations.6

Leximin-optimal allocations. A Leximin-optimal alloca-
tion [Dubins and Spanier, 1961] is one that maximizes the
minimum utility that any agent achieves, subject to which the
second-minimum utility is maximized, and so on. The utilities
induced by a Leximin-optimal allocation are unique, although
there may exist more than one such allocation.

3 Results
This section presents our theoretical results, summarized in
Table 1. We first consider equitability and its relaxations, then
consider them in conjunction with Pareto optimality, before
finally adding envy-freeness (and its relaxations) to the mix.

3.1 Existence and Computation of EQ, EQ1, EQx
We will start by observing that envy-freeness and equitability
(and their corresponding relaxations) become equivalent when
the valuations are identical (i.e., when, for every good j ∈ [m],
vi,j = vk,j for all i, k ∈ [n]).
Proposition 1. For identical valuations, an allocation is
EF/EF1/EFx if and only if it is EQ/EQ1/EQx.

It is known that determining whether a given instance has
an envy-free (EF) allocation is NP-complete even for identical
valuations (via a straightforward reduction from PARTITION)
[Lipton et al., 2004].7 Proposition 1 implies that the same
holds for equitable (EQ) allocations. By contrast, an EQx (and
therefore EQ1) allocation always exists and can be efficiently
computed (Proposition 2) even for non-identical valuations.
Proposition 2 ([Gourvès et al., 2014]). An EQx allocation
always exists and can be computed in polynomial time.

Briefly, [2014] prove Proposition 2 using a greedy algo-
rithm. In each round, the algorithm assigns a least-happy
agent its favorite good from among the remaining goods.
Thus, at any stage, the most recent good assigned to an agent
is also its least-favorite good in its own bundle. Since each
new good is assigned to an agent with the least utility, an allo-
cation that is EQx prior to the assignment continues to be so

5 [2004] previously defined a slightly weaker notion than EF1,
but their algorithm can, in fact, compute an EF1 allocation.

6[2016] define a Nash optimal allocation as one that provides pos-
itive utility to the largest set of agents, and subject to that, maximizes
the geometric mean of valuations. Our results hold even under this
extended definition.

7In fact, the problem is strongly NP-complete due to a similar
reduction from 3-PARTITION.

after it (up to the removal of the most recently assigned good).
The claim now follows by induction over the rounds.

Proposition 2 presents an interesting contrast between the
notions of EQx and EFx: An EQx allocation is guaranteed to
exist and can be efficiently computed, whereas for EFx, even
the question of guaranteed existence is an open problem.

3.2 Equitability and Pareto Optimality
We now turn our attention to computing an allocation that is
both equitable up to one good and Pareto optimal (we use the
shorthand EQ1+PO for such allocations). Unfortunately, such
allocations might fail to exist when the valuations are allowed
to be zero-valued (Example 1). This provides an interesting
contrast with the analogous relaxation of envy-freeness; it is
known that an allocation satisfying EF1 and PO always exists
[Caragiannis et al., 2016; Barman et al., 2018a].
Example 1 (Non-existence of EQ1+PO). Consider an in-
stance with three agents a1, a2, a3 and six goods g1, . . . , g6.
The goods g1, g2, g3 are valued at 1 by a1 and at 0 by a2 and
a3. The goods g4, g5, g6 are valued at 1 by a2 and a3 and at
0 by a1. Any PO allocation must assign g1, g2, g3 to a1 (giv-
ing it a utility of 3) and allocate g4, g5, g6 between a2 and a3.
Either a2 or a3 receives at most one good, creating an EQ1
violation with a1. Thus, an EQ1 and PO allocation might fail
to exist even under binary valuations.

Worse still, when the valuations can be zero-valued, deter-
mining whether there exists an EQ1+PO allocation is strongly
NP-hard. Similar hardness results hold for EQx+PO and
EQ+PO allocations as well (Remark 1).
Theorem 1 (Hardness of EQ1 + PO). Given any fair divi-
sion instance with additive valuations, determining whether
there exists an allocation that is equitable up to one good
(EQ1) and Pareto optimal (PO) is strongly NP-hard.

Proof. We will show a reduction from 3-PARTITION, which is
known to be strongly NP-hard. An instance of 3-PARTITION
consists of a set of 3r numbers S = {b1, . . . , b3r} where
r ∈ N, and the goal is to find a partition of S into r subsets
S1, . . . , Sr such that the sum of numbers in each subset is T ,
where T := 1

r

∑
ai∈S bi.8

We will construct a fair division instance as follows: There
are r+1 agents a1, . . . , ar+1 and 3r+2 goods g1, . . . , g3r+2.
For every i ∈ [r] and j ∈ [3r], agent ai values the good gj at
bj . The agents a1, . . . , ar all value the goods g3r+1 and g3r+2

at 0. Finally, the agent ar+1 values g3r+1 and g3r+2 at T each,
and all other goods at 0.

(⇒) Suppose S1, . . . , Sr is a solution of 3-PARTITION.
Then, an EQ1 and PO allocation A = (A1, . . . , Ar+1) can
be constructed as follows: For every i ∈ [r], Ai := {gj :
bj ∈ Si}, and Ar+1 := {g3r+1, g3r+2}. Notice that A is
EQ1 because each of the agents a1, . . . , ar has utility T , and
the utility of the agent ar+1 exceeds T only by a single good
g3r+2. Furthermore, A is PO because each good is assigned
to an agent with the highest valuation for it.

(⇐) Now suppose that A = (A1, . . . , Ar+1) is an EQ1 and
PO allocation. Since A is PO, it must assign g3r+1 and g3r+2

8Note that we do not require S1, . . . , Sr to be of size three each;
3-PARTITION remains strongly NP-hard even without this constraint.



to ar+1. Furthermore, since A is EQ1, each of the agents
a1, . . . , ar should have a utility of at least T under A, i.e., for
every i ∈ [r], vi(Ai) ≥ vr+1(Ar+1 \ {g3r+2}) = T . This
induces a solution of the 3-PARTITION instance.

Remark 1 (Hardness of EQx+PO/EQ+PO). The reduction
in Theorem 1 can also be used to prove strong NP-hardness
of finding an EQx+PO allocation (same construction works)
or an EQ+PO allocation (if ar+1 values g3r+2 at 0).

Our next result shows that for the special case of binary
valuations (i.e., for all i ∈ [n], j ∈ [m], vi,j ∈ {0, 1}), an
EQ+PO allocation, if it exists, can be computed in polyno-
mial time. Later, we will show similar tractability results for
EQ1+PO and EQx+PO allocations (Theorem 4).

Theorem 2 (Algorithm for EQ+PO for binary valuations).
There is a polynomial-time algorithm that given as input any
fair division instance with additive and binary valuations, re-
turns an allocation that is equitable (EQ) and Pareto optimal
(PO) whenever such an allocation exists.

Proof. We will use a maximum flow algorithm. For binary
valuations, an allocation is PO if and only if it assigns each
good to an agent that approves it. For an EQ allocation A,
we have vi(Ai) = vk(Ak) = c (say) for every i, k ∈ [n].
Consider a bipartite graph G = ([n] ∪ [m], E) over the set of
agents and goods with an edge (i, j) ∈ E for every i ∈ [n]
and j ∈ [m] such that vi,j = 1. For any fixed c ∈ N, construct
a flow network where the source node S is connected to each
agent node in [n] with an edge of capacity c. Each node corre-
sponding to a good in [m] is connected to the sink node T with
an edge of capacity 1. The edges between agents and goods
are of capacity 1. It is straightforward to check that there ex-
ists an EQ+PO allocation in the fair division instance (with
common utility c) if and only if the above network admits a
feasible flow of value n · c. The desired algorithm simply iter-
ates over all integral values of c between 1 and bm/nc.

On the other hand, when all valuations are strictly positive
(i.e., vi,j > 0 for all i, j), there always exists an allocation
that is both equitable up to any good and Pareto optimal.

Proposition 3 (Existence of EQx+PO for positive valua-
tions). Given any fair division instance with additive and
strictly positive valuations, an allocation that is equitable up
to any good (EQx) and Pareto optimal (PO) always exists.

Proof. (Sketch.) We will show that any Leximin-optimal allo-
cation, say A, satisfies EQx (Pareto optimality is easy to ver-
ify). Suppose, for contradiction, that there exist agents i, k ∈
[n] and some good j ∈ Ak such that vi(Ai) < vk(Ak \ {j}).
Let B be an allocation derived from A by transferring the
good j from agent k to agent i. Notice that under B, both
agents i and k have strictly greater utility than vi(Ai), while
all other agents have exactly the same utility as under A. Thus,
B is a ‘Leximin improvement’ over A—a contradiction.

Although Proposition 3 offers a strong existence result,
it does not automatically provide a constructive procedure
for finding such allocations. Indeed, computing a Leximin-
optimal allocation is known to be intractable [Bezáková
and Dani, 2005; Plaut and Roughgarden, 2018]. Our

next result (Theorem 3) addresses this gap by providing a
pseudopolynomial-time algorithm for finding an EQ1 and PO
allocation when the valuations are strictly positive.

Theorem 3 (Algorithm for EQ1+PO for positive valua-
tions). Given any fair division instance I = 〈[n], [m],V〉
with additive and strictly positive valuations, an alloca-
tion that is equitable up to one good (EQ1) and Pareto
optimal (PO) always exists and can be computed in
O(poly(m,n, vmax)) time, where vmax = maxi,j vi,j .

In particular, when the valuations are polynomially
bounded (i.e., for every i ∈ [n] and j ∈ [m], vi,j ≤
poly(m,n)), our algorithm runs in polynomial time. In con-
trast, computing a Leximin-optimal allocation remains NP-
hard even under this restriction [Bezáková and Dani, 2005].

The proof of Theorem 3 is deferred to the full version [Free-
man et al., 2019] but a brief idea is as follows: Our algorithm
uses the framework of Fisher markets, which are well-studied
models of a set of buyers spending their budgets of virtual
money on utility-maximizing bundles of goods. Standard wel-
fare theorems in economics guarantee that equilibrium (i.e.,
market clearing) outcomes in these markets are economically
efficient. However, such outcomes could, in general, lead
to fractional allocations and be highly inequitable. Our algo-
rithm addresses the first challenge by starting with (and always
maintaining) an integral equilibrium of some Fisher market.
To meet the second challenge, our algorithm uses a combina-
tion of local search and price-rise routines to gradually move
towards an approximately equitable equilibrium. The anal-
ysis for achieving the desired running time and correctness
guarantees is intricate, and involves a number of structural
observations and potential function arguments.

Our techniques are inspired from a similar recent algorithm
of [2018a] for finding allocations that are envy-free up to one
good (EF1) and Pareto optimal (PO). A key difference be-
tween the two algorithms lies in the way a local improvement
is defined: For [2018a], a local improvement is defined in
terms of equalizing the agents’ spendings, whereas for us, it
pertains to equalizing the agents’ utilities. We believe that the
latter approach is more direct, and leads to a simpler algorithm
and analysis. This distinction is also necessary, because as
we will show in Proposition 4, an EQ1+EF1+PO allocation
might fail to exist even with strictly positive valuations. There-
fore, any algorithm that is tailored to return an EF1 outcome—
including the algorithm of [2018a]—will invariably fail to find
the desired EQ1+PO allocation, motivating the need for an al-
ternative approach.

Given the success of market-based algorithms in finding
EQ1+PO allocations, it is natural to ask whether these tech-
niques can be extended to find an EQx+PO allocation. Unfor-
tunately, this is where these techniques hit a roadblock. The
problem stems from the fact that the market-based algorithm
always outputs a fractionally Pareto optimal (fPO) allocation,
but there exist instances where no EQx allocation satisfies fPO
[Freeman et al., 2019]. Whether an EQx+PO allocation can be
computed in (pseudo-)polynomial time with strictly positive
valuations is an intriguing question for future research.



3.3 Equitability, Envy-Freeness and Pareto
Optimality

We will now consider all three notions—equitability, envy-
freeness, and Pareto optimality—together. Recall from Propo-
sition 3 that for strictly positive valuations, an EQ1+PO (in
fact, an EQx+PO) allocation is guaranteed to exist. It is also
known that an EF1+PO allocation always exists. One might
therefore ask whether an EQ1+EF1+PO allocation also al-
ways exists. Our next result (Proposition 4) rules it out.
Proposition 4 (Non-existence of EQ1+EF1+PO). There ex-
ists an instance with strictly positive valuations in which no
allocation is simultaneously equitable up to one good (EQ1),
envy-free up to one good (EF1) and Pareto optimal (PO).

Proof. Fix some n ≥ 2 and 0 < ε < 1
2n+2 . Consider

an instance with n + 1 agents a1, . . . , an+1 and 3n + 1
goods g1, . . . , g3n+1. Each of a1, . . . , an values each of
g1, . . . , gn−1 at 2 and each of gn, . . . , g3n+1 at ε. Agent an+1

values every good at 1. By the pigeonhole principle for the
goods g1, . . . , gn−1, some agent among a1, . . . , an must have
utility at most (2n + 2)ε < 1. This means that an+1 can be
assigned at most one good (otherwise EQ1 is violated). There-
fore, if all the goods are allocated (which is a necessary condi-
tion for a PO allocation), at least 3n goods must be assigned
among a1, . . . , an. This means that one of these agents gets
at least three goods, creating an EF1 violation with an+1.

Remark 2. Proposition 4 has several interesting implications.
First, it shows that a Nash optimal allocation—which is guar-
anteed to be EF1 and PO [Caragiannis et al., 2016]—need not
satisfy EQ1. Similarly, the algorithm of [2018a] for comput-
ing an EF1 and PO allocation could also fail to return an EQ1
allocation. By contrast, our algorithm in Theorem 3 is guaran-
teed to find an EQ1 and PO allocation. Finally, it shows that
the Leximin-optimal allocation—which is guaranteed to be
EQx and PO for strictly positive valuations (Proposition 3)—
need not be EF1.

Comparison with cake-cutting. It is worth comparing
Proposition 4 with the corresponding results for divisible
goods (i.e., cake-cutting). [2013] have shown that there might
not exist a division of the cake that simultaneously satisfies
EQ, EF, and PO. Our result in Proposition 4 shows an anal-
ogous impossibility for indivisible goods. Interestingly, the
impossibility for cake-cutting goes away when PO is relaxed
to completeness (i.e., only requiring that the entire cake is
allocated). Under this relaxation, it is known that a perfect
allocation of the cake exists [Alon, 1987].9 By contrast, for
indivisible goods, the impossibility remains even when PO is
relaxed to completeness and EF1 is relaxed to proportionality
up to one good (Prop1).10 Indeed, the proof of Proposition 4
works even under these relaxations. Moreover, the proof can
be easily extended to show the non-existence of EQk, Prop`
and complete allocations for any constants k, ` ∈ N.

9An allocation A is perfect if for every i, k ∈ [n], vi(Ak) =
1
n

.
10An allocation A is proportional if for every i ∈ [n], we have

vi(Ai) ≥ 1
n

∑
k∈[n] vi(Ak). An allocation A is proportional up to

one good [Conitzer et al., 2017] if for every i ∈ [n], there exists a
good g such that vi(Ai ∪ {g}) ≥ 1

n

∑
k∈[n] vi(Ak).

We now turn to the computational aspects of allocations
with all three properties. Note that the allocation constructed
in the proof of Theorem 1 is envy-free. Therefore, from The-
orem 1 and Remark 1, we obtain strong NP-hardness of all
combinations of the three properties.
Corollary 1 (Hardness of EF+EQ+PO). Let X ∈
{EF,EFx,EF1}, Y ∈ {EQ,EQx,EQ1}, and Z = PO. Then,
determining whether a given instance admits an allocation
that is simultaneously X , Y , and Z is strongly NP-hard.

The intractability in Corollary 1 can, in certain cases, be
alleviated when the valuations are restricted to be binary. We
will start with an observation concerning EQ and PO alloca-
tions under this restriction.
Proposition 5. For binary valuations, an allocation that is eq-
uitable (EQ) and Pareto optimal (PO) is also envy-free (EF).

Proof. Suppose each agent gets a utility k under the said EQ
allocation. For binary valuations, PO implies that each agent
i approves all the goods in its bundle. Furthermore, any other
agent j gets at most k goods approved by i (simply because
agent j gets exactly k goods). Hence, the allocation is EF.

Remark 3. Proposition 5 shows that for binary valuations,
an EQ+PO allocation (if it exists) is, in fact, EQ+PO+EF
(hence also EQ+PO+EFx/EF1). From Theorem 2, we know
that there is a polynomial-time algorithm for determining
whether an instance with binary valuations admits an EQ+PO
allocation. A similar implication therefore also holds for
EQ+PO+EF/EF1/EFx allocations.

Theorem 4 shows that binary valuations are also useful
when one considers the combination of EQ1, EF1, and PO.
Theorem 4 (Algorithm for EQ1+EF1+PO for binary valu-
ations). There is a polynomial-time algorithm that given as
input any fair division instance with additive and binary valu-
ations, returns an allocation that is equitable up to one good
(EQ1), envy-free up to one good (EF1), and Pareto optimal
(PO), whenever such an allocation exists.

The proof of Theorem 4 is deferred to the full version [Free-
man et al., 2019]. The idea is to show that any EQ1+PO allo-
cation, if it exists, is also Nash optimal. For binary valuations,
all Nash optimal allocations induce identical utility profiles
(up to renaming of agents). As a result, every Nash optimal
allocation satisfies EQ1. It is known that every Nash opti-
mal allocation satisfies EF1 and PO [Caragiannis et al., 2016].
Moreover, for binary valuations, a Nash optimal allocation can
be computed in polynomial time [Darmann and Schauer, 2015;
Barman et al., 2018b]. Therefore, determining the existence
of an EQ1+EF1+PO allocation reduces to checking whether
an arbitrary Nash optimal allocation satisfies EQ1, which can
be done in polynomial time.

Notice that for binary valuations, a Pareto optimal alloca-
tion is EF1 if and only if it is EFx, and is EQ1 if and only if it
is EQx. Therefore, when the valuations are binary, the above
algorithm works for all combinations of X + Y + PO, where
X ∈ {EFx,EF1} and Y ∈ {EQx,EQ1}.

We conclude this section by observing that some of the
problems discussed in Corollary 1 continue to be intractable
even for binary valuations. This follows from a result of



Figure 1: Experimental results for Spliddit and synthetic datasets.

[2008], who showed that finding an envy-free (EF) and
Pareto optimal (PO) allocation under binary valuations is NP-
complete (refer to Proposition 21 in their paper).
Proposition 6 ([Bouveret and Lang, 2008]). Given any fair
division instance with additive and binary valuations, deter-
mining whether there exists an envy-free (EF) and Pareto op-
timal (PO) allocation is NP-complete.
Remark 4. It is easy to verify that the allocation constructed
in the reduction of [2008] is, without loss of generality, equi-
table up to one good (EQ1). Therefore, for binary valuations,
determining whether there exists an allocation that is EF +
EQ1/EQx + PO is NP-complete.

4 Experiments
In this section, we compare the proposed and existing algo-
rithms (in particular, ALG-EQ+PO, MNW, and Leximin) in
terms of how frequently they satisfy various fairness and effi-
ciency properties in the real-world and synthetic datasets.

For real-world preferences, we used data obtained from the
popular fair division website Spliddit [Goldman and Procaccia,
2014]. Out of the 2212 instances in the Spliddit data, we used
the 914 instances that had strictly positive valuations and m ≥
n. The instances have between 3 and 9 agents, and between
3 and 29 goods.11 Users are restricted to normalized, integral
valuations. For synthetic data, we generated 1000 instances
with n = 5, m = 20, and (strictly positive) valuations drawn
i.i.d. from Dirichlet distribution. The concentration parameter
for each item is set to 10 to generate normalized valuations.12

We consider the following fairness and efficiency prop-
erties: EQ+PO, EQ1+PO, EQx+PO, EQ1+EF1+PO, and
EQx+EFx+PO. For each instance of the Spliddit and syn-
thetic datasets, we check whether the property is satisfied by
the output of ALG-EQ+PO, MNW, and Leximin. Figure 1
presents the relevant histograms. Note that each of the algo-
rithms we consider is Pareto optimal, so the histograms would
be unaltered even if we did not assess PO.

Not surprisingly, we see that very few instances permit a
solution that is Pareto optimal and exactly equitable. When-

11More than 80% of the instances have three agents and six goods.
12We normalize the valuations in the synthetic data to allow for a

fair comparison with the Spliddit data, which has normalized valua-
tions by design. We remark that all algorithms studied in this paper
work even in the absence of this assumption.

ever such a solution exists, it is provably achieved by Leximin,
but this happens in only 1% of Spliddit instances and none of
the synthetic instances. For the EQ1 relaxation, we see that
not only do Leximin and ALG-EQ+PO satisfy both EQ1 and
PO, but so does MNW on over 94% of Spliddit instances (and
over 88% of synthetic instances). However, this trend changes
when we consider EQx. ALG-EQ+PO, despite being guar-
anteed to satisfy EQ1, only satisfies EQx on 62% of Spliddit
instances (and 52% of synthetic instances). A similar drop
off is observed with MNW. Thus, for the purpose of achiev-
ing (approximately) equitable and Pareto optimal allocations,
Leximin is a clear winner.

We observe little change when, in addition to approximate
equitability and Pareto optimality, we also require approxi-
mate envy-freeness. Indeed, in most cases, an allocation that
is EQ1+PO/EQx+PO is also EF1/EFx. It is interesting to note
that while MNW—which is appealing from the perspective of
achieving relaxed envy-freeness—quite often fails to satisfy
EQx, Leximin provably satisfies relaxed equitability while
also achieving EFx on a large fraction of instances.

5 Discussion
Our work reveals some intriguing similarities and differences
between equitability and envy-freeness. In many places, our
work parallels the existing literature on envy-freeness: We
present Leximin as a canonical algorithm for EQ1+PO, just
like MNW achieves EF1+PO. Also, our pseudopolynomial-
time algorithm for EQ1+PO uses similar techniques to that
of [2018a] for EF1+PO. However, in other places, the differ-
ences are more pronounced. Most notably, EQx comes with a
universal existence guarantee (often in conjunction with PO),
while the existence of EFx allocations remains an open prob-
lem. Finally, exact equitability is a knife-edge property often
hard to achieve in practice, unlike envy-freeness which is of-
ten satisfiable [Dickerson et al., 2014].

Going forward, it would be very interesting to extend our
results to the public decisions model of [2017]. Extensions
to models with additional feasibility constraints on the alloca-
tions [Bouveret et al., 2017], or settings with both goods and
chores [Aziz et al., 2018] will also be interesting.
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